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Plan (tentative)

1. Lecture I
e Motivations: MC, sampling, enumeration
e Examples: Ising, (monomer)-dimer, graph coloring, matchings, ...
e Speed of convergence: Ty, spectral gap
2. Lecture II
e Some classical tools: (path) coupling, canonical paths, bottleneck ratio, ...
e Examples: fast mixing for monomers-dimers with large monomer density
3. Lecture 111
e Monotone MC.

e A case study: Glauber dynamics of lozenge tilings.
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Goals:

e sample (exactly or approximately) from a complicated probability measure 77(c)
w(e), 0 e, 1Q1>1

Ex 1: ()= {proper colorings of graph G},w=1
Ex 2: Q) = {matchings of G},w = ¢"led8esof7}
Ex 3:Ising. G=(V,E),Q0={-1, +1}V, w(o) = eIBZ(x,y)eEUx‘Ty
e Enumerate (exactly or approximately). More generally, compute/estimate
ZU’EQ w(a)

Ex 1: ) w(o) =#{proper colorings of G}
Ex3: ) w(o)=Zgg

Other classical example: card shuffling. (=S, (symmetric group)
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Common features: many “degrees of freedom”, () large.
Hard to sample directly. Better option: MC simulation
(e.g. graph matchings: simple-minded “rejection sampling” vs MCMC)
Basic idea:
e define ergodic MC X = (X,,),,;>0 on () with stationary distribution 7
e wait “long enough”: P (X, =0) R 7T(0)
e how long is “long enough”?

e math goal: results of the type “if n> f(|(}], ¢) then |P (X, =-) — ()]l <e. Useful for
simulations if f does not grow too fast with [()], gl

NB: efficient algorithm vs. “physically relevant” algorithm



Sampling=Counting 544

Meta-theorem: fast approximate sampling algorithm implies fast approximate counting
algorithm.

Example: M (G) = {matchings of G= (V,E)}, T =uniform

(For those interested: see [M. Jerrum's book: “Counting, sampling and integrating:
Algorithms and complexity”])

e assume: MC samples from 7t with error ¢ in time T(|V|, |E|, €) (for every G)
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Meta-theorem: fast approximate sampling algorithm implies fast approximate counting
algorithm.

Example: M (G) = {matchings of G= (V,E)}, T =uniform

(For those interested: see [M. Jerrum's book: “Counting, sampling and integrating:
Algorithms and complexity”])

e assume: MC samples from 7t with error ¢ in time T(|V|, |E|, €) (for every G)

e then: we can approximate |M (G)| in time 7 (|V|,|E|, &) S|E[*xe 2x T(|V|,|E|, &/ (6|E|))



Sampling=Counting 544

Meta-theorem: fast approximate sampling algorithm implies fast approximate counting
algorithm.

Example: M (G) = {matchings of G= (V,E)}, T =uniform

(For those interested: see [M. Jerrum's book: “Counting, sampling and integrating:
Algorithms and complexity”])

e assume: MC samples from 7t with error ¢ in time T(|V|, |E|, €) (for every G)
e then: we can approximate |M (G)| in time 7 (|V|,|E|, &) S|E[*xe 2x T(|V|,|E|, &/ (6|E|))
e Note: if T(|V],|E|, ¢) is polynomial in |V, IE|, e~ then 7 (|V|,|E|, €) is, too.
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e P:transition matrix. P = (P(0,1))se0
P(Xn=nXy-1=0)=P(co,n)

o if r€(), P, :law of process X started from Xy=c¢. If v is distribution on (), then P,:
law of process started from X~ v. P}: law of X; started from Xy~ v.

e assume irreducibility (ergodicity) + aperiodicity. 7t unique stationary distribution

P =, thatis, P (X, =0) =7 (0)

General theory: P,(X,=0) = (vP")(0) R 7t(0) exp. fast (not quantitative)
e We will deal with reversible MC, i.e., t(c)P(c, 1) =7 (n)P(n,0)

Implies stationarity and time-reversal symmetry



Example 1: Ising Z

G=(V,E) finite graph. ()= (=1, +1}V. 0= (0y)revEQD, B>0.

eﬁ Z(x,y)eE‘TxUV

Boltzmann distribution: (o) = Zoe

Define MC (o (n)),>00n () as follows:
e start from o (0) € ()
e at step 1, choose x € V uniformly at random
e define o(n) as o(n), =0 (n—1),if y #x and sample o (1), from

TT(-|oy\ g =0 (n—1)y\ (). Explicitly, o(n), is chosen to be ¢ = +1 with probability

eﬁgzyr<x,y>€E‘7(n_1)y eﬁezy:(x,y)eE‘T(”—l)y

ZS=+1 eIBSZy:(x,y)EEU'(Tl—l)y - 2COSh(lBZy:(x,y)EE (T(Tl — 1)]/)

(1)




Example 1: Ising 844

Exercise 1. Write down the transition matrix P
Exercise 2. Prove that the MC is reversible: 7t (c)P(c,n) =7 (n)P(y,0)
Exercise 3. Prove that the MC is aperiodic irreducible: for every o,0" € W there exists a path ¢ (1),0<n <

M with 0 (0)=0,0(M)=0c¢"and P(0;, 0;4+1) >0.

Remark. The transition rate

eﬁ82y:(x,y)eEU(n_1)y

2cosh(,BZy:(x,y)€E oc(n—1)y)

(2)

is a local function of ¢(n—1) around x. Does not require to compute Z ¢!



Example 2: monomer-dimer model

G =(V,E) finite graph. A >0 “fugacity parameter”. (3 = M (G) = {matchings of G}.

NB: not just perfect matchings.

Each M e()is asubsetof E. e M: “dimer ate”. x € V unmached in M: “monomer at x”.
Call m(M) the number of monomers of M. Boltzmann distribution:

m(M) m(M)
A A

(M) = — = .
Y e AT g

(3)

Note: for A = 0, 77 supported by maximal matchings.



Example 2: monomer-dimer model

Define MC (M(n)),>0 on () as follows:
e start from M(0) € ()
e atstep n, choose e= (x,y) € E uniformly at random
e cal M(n—1)=Mm—1)\ {(x,1)}. (NB: it may or may not coincide with M(n—1))

e if either x or y belong to an edge of M (1 — 1), do nothing

1
14+ A2

e otherwise, let M(n)=M(n—1) U {(x,y)} with probability
and M(n)=M(n—1) with probability

A
1+ A2

Exercise 4. Check irreducibility, aperiodicity and reversibility.

Remark. If A =0, irreducibility can fail. There are better algorithms
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G=(V,E) finite, planar graph. ()= {perfect matchings of G}. Given e E, let w,>0: edge
weight. Assume that G admits perfect matchings.

Eg:G={1,...,N}x({1,...,2L} with nearest-neighbor edges.

If Me ), ee M we say that “e is occupied by a dimer in M”

HEEM We
ZM’EQ HeEM’ We!

Boltzmann distribution 7t(M) =

Given face f of G and M (), write df for the collection of edges around f.

Say that “a rotation at f is possible in M” if every second edge of df belongs to M. In
this case, call M/ € Q) the configuration where occupied /empty edges of o f switch roles,
and nothing else changes.

NB: rotation possible only at faces f with [0 f| even.



Example 3: planar dimer model

Introduce MC (M(n)),> as follows:
e start from M(0) € ()
e at each step, choose an (inner) face f uniformly at random

e if a rotation at f is possible in M(n —1), then let M (n) =M(n — 1)/ with probability

Heeaf:e¢M(n—1) We

(4)

p =]
Heeaf:e¢M(n—1) We + Heeaf:eEM(n—l) We
and M(n) =M (n—1) with probability 1 —p.
e if the rotation at f is not possible in M(n —1), do nothing.

Exercise 5. (Non trivial). If G is bipartite, then the MC is irreducible.



Speed of convergence

General theory: irreducible, aperiodic MC on finite state space:
Py (Xy=0) —7(0)| < Ce™ ™. (5)

Cc ! depend on (), can diverge as [()] — co.
PB: quantify speed of convergence. Several classical ways, among which:
1. Total variation distance mixing time (Thx)
2. Mixing time w.r.t other distances (L¥, Hellinger distance, separation distance...)
3. spectral gap/relaxation time T,
4. log-Sobolev constant, relative entropy

In these lectures, we focus on 1 and 3. “Coupling arguments” adapt well to Ty, spec-
tral/variational arguments to T\



(Total variation) mixing time

(classical book: Levin and Peres, Markov chains and Mixing times)

(Total variation distance) Let y, v be probability measures on finite set (). Then,

1
lv— =5Z p(x) — v(x)| :T?é(W(A) —v(A)|=Iinf{P(X#Y): X~pu, Y ~v}. (6)

xe()

Exercise 6. It is indeed a distance. Try to prove the equalities.

(Mixing time) Let e € (0,1), X be Markov Chain on ). Then,

Tmix(€) =inf {n > 0:max||P} — || < e}. (7)
xe()

NB: worst-case initial condition (max,eq ).



Spectral gap/Relaxation time

Let X be a reversible MC on ().
Define (f,g):= erﬂf(x)g(x)n(x) for f,g:()— R.
Reversibility implies ( f, Pg) = (Pf,g): P is self-adjoint
Easy/classical facts:

e Spectrum (A;);cqisreal. A; Z=2Ap>---

o 1K1

(I+P)
2

e Up to redefining P — , we can assume that 0<A;<1
e Irreducibility =1, =1 is simple.

Note: P1=1, tP=P



Spectral gap/Relaxation time

(Spectral gap) Let X be reversible. We define the spectral gap equivalently as

1. y=1—-A,>0. Relaxation time T := %

2. (Variational principle)

f:Q-R,Var,(f)#0 Varrc(f)

(8)

where  E(f) = ((I—P)j‘,f)n:%Zx,yEQ 7T (x)P(x,y)|f (x) —f(y)l2 (Dirichlet form)
3. (L? relaxation) <y is the best (i.e. largest) constant such that foralln€N, f: ) — R

Var(P"f) < Var,(f)(1—7)"" (9)




Tmix, Trel: basic facts 7

e T (€) decreases with ¢ (obvious) and
_1 1
Tmix(e) <[loga(e )]Tmix<z) (10)

that is, at time m Tmlx( ) the variation distance from equilibrium is at most 27".

o General Tyyix/ Tl cOmparison:

(Trel - 1)10g<2i8) < Tmix(g) < Trellog( . ! )

€ Min 7t (x)

e Meta-statement: upper bounds on Ty, T;el are harder to get than lower bounds.

In fact, Tomix(€) = Trel > )

22 for any test function f:()— R.



Tmix upper bounds and coupling

Advantage of total variation distance in the definition of T,;,: variational characteriza-
tion of | — v|| in terms of optimal coupling.

Coupling methods powerful in estimating Ty;x.

Warm-up result:

For every x,y (), let (X,,,Y},) >0 be a coupling of the processes started at (x,y).
Call Teouple =min {n: X, =Y} and P, , the distribution of (X, Y)n3o0.

If maxy ,eqlPxy(Teouple > 1) <&, then Ti(e) <n.

Example: lazy RW on {1,...,1}, Tmix S n>.



Tmix upper bounds and coupling

Proof. Assume wlog that X, =Y, for n > Toupte- Then,
”P;ci_P;” =11’1f{]P)(X7’: Y)X"’P?/YNP;} < ]P)(Xn?l:yn) — ]Px,y(Tcouple>n)- (11)

We deduce max, ,cqllPY —Pyll<e.
Now note that

IP} -7t = max|P{(A)—(A)l=max| )  7(IPI(A) —Pj(A)]
AcCQ) AcCQ) yen

< n _pn — n_ pn
< ) T@maxiPi(A) = Pj(A)l= ) wW)IPY =Pyl <e.
yeQ yeQ

O

Drawback: in general, difficult to control 7 ople. Better idea: “path coupling”.
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Let G = (V,€) be connected a graph with V=0). Assign £ 3¢~ {,>1 “length”.

p: induced graph distance on §. px: Kantorovich transportation distance between dis-
tributions on (:

ex(, v) =inf{E(p(X,Y)): X ~u, Y ~v)}.

Since p(x,y) 2 1y, it follows ||y —v|| < px (1, V).



Path coupling(reversible) invariant method

(Bubley-Dyer '97) Assume that there exists « < 1 and, for every x ~9y, a coupling
(X,Y) of P(x,-),P(y,-) such that E(o(X,Y)) <p(x,y)e”". Then, px(uP,vP) <e "px(u,v).

Immediate consequence:

IP} — Pill < ox(VP", uP™) = px(vP"~'P,uP"~'P)
< e "ok (vP" T, uP"h
<

(iterate) e "ok (u,v) <e ""diam, (1)

diamp(Q))
og(—7—)

OO IETyd The mixing time is Tyic(€) < (one can also deduce y>1—e™%).

Advantage: needs to check contraction only after 1 step, and for x ~“ .

Drawback: if condition fails even for one pair x ~9, theorem does not apply.



Path coupling method for the monomer-dimer model =

Recall: G=(V,E) finite graph. A >0 “fugacity parameter”. (=M (G) = {matchings of G}.
Boltzmann distribution: 7(M) o< A"M).

e atstep n, choose e = (x,y) € E uniformly at random

o call M(n—1)=Mn—1)\ {(x,y)}.

e if either x or y belong to an edge of M (1 — 1), do nothing

e otherwise, let M(n)=M((n—1) U {(x,y)} with probability ﬁ, Mmn)=M(mn—1) else

Define G = (Q), &) with (M, M") € £ iff M=M"U{e}. Set L pmy =1, i.e., p is usual graph
distance, i.e., o(M,M") = > . Teem—Loem|. Let Ag be the maximal degree of G.

Fix A> 0. There exists Ao(A) < oo such that path coupling works with « =1/
(2|E), for all A > A and graphs with Ag < A.




Path coupling method for the monomer-dimer model

Proof

o let MM €Q,e=(x,y)EE,egM',M=M"U{e}. Note p(M,M")=1.
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Path coupling method for the monomer-dimer model

Proof
o let MM €0,e=(x,y)€E,e¢ M’ ,M=M"U/{e}. Note p(M,M") =1.
e Goal: couple X ~P(M,-),Y ~P(M’,-) so that E(o(X,Y)) <e *<1 with (x~%

e Note: in M’, monomers at x and V.
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Proof
o let MM €0,e=(x,y)€E,e¢ M’ ,M=M"U/{e}. Note p(M,M") =1.
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e Note: in M’, monomers at x and V.

e Pick ¢’ € E uniformly at random. If x&e’,y &e’, do same move for both processes.
Distance unchanged
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Proof
o let MM €0,e=(x,y)€E,e¢ M’ ,M=M"U/{e}. Note p(M,M") =1.
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e Note: in M’, monomers at x and V.

e Pick ¢’ € E uniformly at random. If x&e’,y &e’, do same move for both processes.
Distance unchanged

e If e=¢’,do same move for both. Distance decreases by 1



Path coupling method for the monomer-dimer model

Proof
o let MM €0,e=(x,y)€E,e¢ M’ ,M=M"U/{e}. Note p(M,M") =1.
e Goal: couple X ~P(M,-),Y ~P(M',-) so that E(o(X,Y)) <e™*<1 withocfv%

e Note: in M’, monomers at x and V.

e Pick ¢’ € E uniformly at random. If x&e’,y &e’, do same move for both processes.
Distance unchanged

e If e=¢’,do same move for both. Distance decreases by 1

o If ¢'=(x,u),u#y (there are at most Ag such cases) then ¢’ & M, e’ & M.



Path coupling method for the monomer-dimer model

Proof
o letM,M' eQ,e=(x,y)€EE,e&M',M=M"U{e}. Note p(M,M") =1.
e Goal: couple X~P(M,-),Y ~P(M’,-) so that E(p(X,Y))<e"<1witha ~%
e Note: in M’, monomers at x and .

e Pick ¢ € E uniformly at random. If x&e’,y & e’, do same move for both processes.
Distance unchanged

e If e=¢’,do same move for both. Distance decreases by 1
o If ¢’ = (x,u),u#y (there are at most A such cases) then e’ & M, e’ & M.

For process started at M, no move possible. For the other, put edge with probability
1/(1+A%). Distance increases by 1 with probability 1/ (1 +A%).



Path coupling method for the monomer-dimer model

Proof
o let MM €Q,e=(x,y)€E,e¢gM',M=M"U/{e}. Note p(M,M")=1.
e Goal: couple X~P(M,-),Y ~P(M’,-) so that E(p(X,Y))<e"<1witha ~|1f|
e Note: in M', monomers at x and y.

e Pick ¢’ € E uniformly at random. If x&e¢’,y &e’, do same move for both processes.
Distance unchanged

e If e=¢’,do same move for both. Distance decreases by 1
o If ¢'=(x,u),u#y (there are at most Ag such cases) then ¢’ & M, e’ & M.

For process started at M, no move possible. For the other, put edge with probability
1/(1+A%). Distance increases by 1 with probability 1/ (1 +A%).

. . 1 Acg —1/(2IED)
e Altogether, new average distance is <1 + ﬁ(—l + 2@) e VEED i A > (A
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Other examples of application of path coupling:

e Ising dynamics for S < Bo(Ag) (keyword: Dobrushin's uniqueness condition)
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Other examples of application of path coupling:
e Ising dynamics for S < Bo(Ag) (keyword: Dobrushin's uniqueness condition)
e perfect colorings for g >2Aq

e hardcore model with small fugacity A. 7(x) o \2vev® x e 0,1}, x,x,=0if v ~w
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Other examples of application of path coupling:
e Ising dynamics for B <Bo(Ag) (keyword: Dobrushin's uniqueness condition)
e perfect colorings for g >2A¢
e hardcore model with small fugacity A. 77(x) oc)\ZUEVx”, xe{0, 1}, x,xp,=0if v~w
e biased RWon {1,...,N}. Letpe (1/2,1) and
(1/2 if x=ye&{1,N}
p/2 it y=x+1,1<x<N
Px,y)=4 (1—-p)/2 if y=x—-1,1<x<N

1—p/2 it x=y=1
| 1-(1-p)/2 it x=y=N
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Other examples of application of path coupling;:
e Ising dynamics for B < Bo(Ag) (keyword: Dobrushin's uniqueness condition)
e perfect colorings for g >2A;
e hardcore model with small fugacity A. 7w (x) o AZUE‘/"”, xe{0, 1}, x,x,=0if v~w
e biased RWon {1,...,N}. Letpe (1/2,1) and
(1/2 if x=y¢&{1,N}
p/2 it y=x+1,1<x<N
Px,y)=4 (1—-p)/2 it y=x—1,1<x<N

1—p/2 it x=y=1
| 1-(1-p)/2 it x=y=N

e In latter example, “exponentially tilted metric”



Geometric methods for T bounds: “Canonical paths”

For every x,y € () fix a “canonical path” I',_,,, of allowed transitions e from x to y.

Given f:()— R write

2
2Varq(f)=) m@ORW(fx)—f@)D) = Zﬂ(x)ﬂ(y)(( > vef] ]

XY X,y e€lyy

1
= Zﬂ(xm(y)Ianylz(('quy' > VS

Pl

< Z T TWIenyl Y VAP

2]
eely .y

— Zn(x)rc(y)ll"x_,yl Z [f(a) — f(b)?

x’y (a/b)erxay

x—»y



Geometric methods for T bounds: “Canonical paths”

Summarizing: Var,(f) <33, TOTWITaylY o cr. . ot f(a) — f (b

Now recall

1
Ef)=5 ), TOPCWIf@)~fWP

x,yeQ)

Reorganizing the sum, deduce

mT(x)7T(y)
Q(e)

Var,(f)SME(f), M=max| > Teeyl |, Qe)=7t(a)P(a,b).

x,y:Tvy>(a,b)

(M:”congestion ratio”) and

1 . &) 1
= =inf >
¥ Trel f Var ( f )




Applications of canonical paths

e SRWon({l,...,N}
o T, <N for two glued copies of Ky

o To<eOLD for Ising on {(1,...,L}"

Tre1 SAIVIIE| for matchings of (V,E). A=monomer “fugacity”

(see Jerrum's book, Sec. 5.3)



Generalization of canonical paths: flows

Given x #y € (), replace single path I',_,, with a “multicommodity flow” f (Sinclair '92)
Py directed simple paths from x to y. P = Uy, Proy
e flow fismap f: P~ R", with
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Generalization of canonical paths: flows

Given x #y € (), replace single path I',_,, with a “multicommodity flow” f (Sinclair '92)
Py directed simple paths from x to y. P = Uy, Proy
e flow fismap f: P~ R", with

Y fp)=rn@)ry)

PEProy

e define for e= (a,b) with positive conductance Q(e) =7t (a)P(a,b)

T 0
f@ =) f®lpl M(f)=maxz

poe




Generalization of canonical paths: flows

Given x #y € (), replace single path I',_,, with a “multicommodity flow” f (Sinclair '92)
Py directed simple paths from x to y. P = U4, Proy
e flow fismap f: P~ R", with
Y fp)=n@)ny)
PEProy
e define for e= (a,b) with positive conductance Q(e) =t (a)P(a,b)
- f (e
Fo=Y forp, M()H=maxtE)

poe

~—infol >

e With same proof as above: y == 1 f Var p) Z M)
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Idea:

e for every x #1y, want to transport quantity 77 (x)7(y) from x to y.
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Idea:
e for every x #1y, want to transport quantity 77 (x)7(y) from x to y.

e rather than deterministic path I',_,,, random path with weight

f(p)

7 () T () yepny

w(p) =



Generalization of canonical paths: flows

Idea:
e for every x #1y, want to transport quantity 77 (x)7(y) from x to y.

e rather than deterministic path I',_,,, random path with weight

f(p)
7T(x) 7T (Y

w(p) = ) Lep,.,

e diversification decreases congestion rate.



Generalization of canonical paths: flows

Idea:
e for every x #1y, want to transport quantity 7w(x)77(y) from x toy.

e rather than deterministic path I,_,,, random path with weight

fp)
7T(x)7T(Y)

w(p) = Lyep,.,

e diversification decreases congestion rate.

Exercise 11. For RW on complete bipartite graph K; n_», prove Ty, < N with canonical paths and
Tre1 S 1 with multicommodity flows.



Geometric methods for T, bounds: “Bottleneck ratio”

Up to now: upper bounds on Ty, Trel. A useful lower bound tool: bottleneck ratio
Given SC(),

Es) 1Yoy T@OPEYAs() =1sW)*  Yresyes TP Y)
TS Var,(1s) 2 7(S) — 71(S)?2 T nSA-7n(S))

Bottleneck ratio (“isoperimetric constant”)

7t(x)P(x,y)
G inf LeSues Y <2D, Tz zib

ScO:(S)<1/2 7T(S)

Exercise 12. T,e1 = N for RW on two copies of Ky with one vertex in common

Exercise 13. Tye1 = eX™) for size-N Curie-Weiss Glauber dynamics, > ..

30/44



Monotone dynamics and global coupling 3144

Let < be a partial order on (). Assume 3 maximal/minimal configuration w™/w™.
Example: Q={-1,+1}", 0 <7 iff 0, <7, for every x€ V. w* = +1.

Example: () = {perfect matchings of G}, G planar, bipartite graph.

o <niff h,(f) <h,(f) for every face f.

We say that a MC on (), <) is monotone (or “attractive”)if Vx,y € Q) with x<y
the processes X, Ystarted from x,y can be coupled so that X, <Y, almost surely for all n > 0.

Most useful when coupling is Markovian and global.
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Let 7, ,_ =inf{n>0: X" (n) = X (n)} with X*/~ the process started from maximal/min-
imal configuration w?*. Then:

If P(7,/->N) <e then Ty (e) <N. !

Proof. Proof: Let X* be the process started from x and X™ the stationary process.

Write

IPY — 1| S P(X¥(N) # X (N)) (third definition of ||-|))
SP(XT(N)# X (N)) (bythewell known sandwich principle)
=P(7,,->N) (bydefinition of coalescence time)
<e¢ (byassumption)

so we deduce T (e) <N. O
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Let O={1,...,N}, usual order. w*=N,w™ =1.
P(x,xil)ziifxileﬂ.P(x,x)=%if1<x<N, P(x,x)zgifxe{l,N}.
Couple (X*)xeq as follows:

e atstep n sample a uniform r.v. U, ~ Unif(0,1)
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Couple (X*)xeq as follows:

e atstep n sample a uniform r.v. U, ~ Unif(0,1)

o IfU,<1/2,1let X*(n)=X*(n—1) for all x.

o If1/2<U,<3/4, let X*(n) =max (X*(n—-1)—-1,1)

o IfU,>3/4,let X*(n)=min (X*(n—1)+1,N)



Monotone dynamics: lazy random walk

Let O={1,...,N}, usual order. w*=N,w™ =1.
P(x,xil)ziifxileﬂ.P(x,x)=%if1<x<N, P(x,x)zgifxe{l,N}.
Couple (X*)xeq as follows:

e atstep n sample a uniform r.v. U, ~ Unif(0,1)

o IfU,<1/2,1let X*(n)=X*(n—1) for all x.

o If1/2<U,<3/4, let X*(n) =max (X*(n—-1)—-1,1)

o IfU,>3/4,let X*(n)=min (X*(n—1)+1,N)

NB: Once X* = X7, they coincide forever. The coupling is global, montone, Marko-
vian.
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Global Markovian coupling for ferromagnetic (8 >0) Ising
e goal: find coupled processes (X7 (1)),>0 re(-1 +1;v that satisfy monotonicity
e atstep n, choose vertex x, € V uniformly at random (the same for all processes)
e sample a uniform variable U, ~ Unif((0,1)) (the same for all processes)

o Set Xy (n)-»1if U,<py,(n—1) and X7 (n) - —1if U, >py (n—1) where

P Ly~ Xy (n=1)

2cosh(B)., . Xy(n—1)) S
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Monotone dynamics: ferromagnetic Ising

Global Markovian coupling for ferromagnetic (8 >0) Ising
e goal: find coupled processes (X7 (1)),>0 re(-1 +1;v that satisfy monotonicity
e atstep n, choose vertex x, € V uniformly at random (the same for all processes)
e sample a uniform variable U, ~ Unif((0,1)) (the same for all processes)

o Set Xy (n)-»1if U,<py,(n—1) and X7 (n) - —1if U, >py (n—1) where

P Ly~ Xy (n=1)

2cosh(B)., . Xy(n—1)) S

pr(n—1)=

Bu

e
e Note: UHW

is increasing if >0, hence coupling is monotone.
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Other classical monotone dynamics:

o hardcore model on bipartite graph G. w <7 iff w, <7, for x even and w, >, for
x odd. w¥: all even/odd vertices occupied

o heat-bath dynamics on perfect matchings of planar, bipartite G.

o heat-bath dynamics for height models

Th) ce 2V P oy LR Vezt hyy=0

with V symmetric and convex



Naive (wrong) idea

Let X be a MC on ((), X) that admits a global monotone Markovian coupling.
Algorithmic description of process:

e randomness is iid sequence (§,),>1 (e.g. for Ising: &, = (x,, U,), x,, ~ Unif(V), U, ~
Unif(0,1))

e state of chain X(n) at time 7 is deterministic function of ¢, and of X(n —1). Write
X(n)=Fg (X(n—1)).

o lterating, X(n) =Fz oFz  o...oF#(X(0))

Appealing idea: stop algorithm at 7, (coupling time of maximal/minimal configura-
tions) and output Z=X(7,,-) = X*(74,-) for all initial conditions x

Problem: P(Z=0)# 7 (0) (e.g.: lazy RW)
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e Find

nmm::inf{n:FgOoFg_l o... OFg_n(af'_) :F§0°F§_1 o... OFg_n(aJ_)}

(in most interesting cases, 11y, <infty a.s.)
o Output Z:=FgoFz o... OPC_nmm(wi) e
e Claim: Z ~ 7t (no bias!)
e Proof: with a picture

e Algorithmically better to replace —n by —2".



Better idea: coupling from the past (Propp-Wilson) s

e View time as running from —oo to 0: {=(...,{-2,¢-1,C0)-

e Find

Tlmmizinf{nZFgOOFg_l o... OFg_n(C(J+) :FérOOFg_lO e OF(':_"(C(J_)}

(in most interesting cases, 11y, <infty a.s.)
e Output Z:=FgoFs o...0Fz (wH) e
e Claim: Z ~ 7t (no bias!)
e Proof: with a picture
e Algorithmically better to replace —n by —2".

e NB: “termination bias”, because Z and 1, not independent. See J. Fill '98 for unbi-
ased interruptible perfect simulation algorithm



Fast mixing of lozenge tiling dynamics

L non-intersecting paths ¢:= (¢"),i=1,...,L, ¢'(x) —¢'(x — 1) =+1,9'(0) = ¢'(L) =i
Partial order: 9 <1 < ¢'(x) <¥'(x) for all i,x

Note: concides with the partial order induced by height function
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Fast mixing of lozenge tiling dynamics

“Tower-move” sampling algorithm:
e Choose 0 <x <L uniformly at random

e resample gpi(x), i=1,...,L uniformly conditionally on goi(x +1),i=1,...,L.
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Fast mixing of lozenge tiling dynamics

“Tower-move” sampling algorithm:
e Choose 0 <x <L uniformly at random

e resample goi(x), i=1,...,L uniformly conditionally on goi(x +1),i=1,...,L.
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e Easy to check: (1) uniform measure 7 is reversible (2) global monotone coupling



Fast mixing of lozenge tiling dynamics

“Tower-move” sampling algorithm:
e Choose 0 <x <L uniformly at random

e resample (pi(x),i: 1,...,L uniformly conditionally on (pi(x +1),i=1,...,L.

A A
& v
v v,
A A
& v
/ /
an 1y

e Easy to check: (1) uniform measure 7 is reversible (2) global monotone coupling

e Single step easy to simulate
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Define function g ®(p)ER as P(¢)= Z Z (pi(x)sin( 7235)
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o if p < then ®(p) <D(1p), and D () —D(p) > if p#p.
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Fast mixing of lozenge tiling dynamics

L L
Define function p—» ®(p) R as P(¢)= Z Z go%x)sin(%)
i=1 x=0
Note:
o if <y then O (¢) < P(Y), and () —D(p) =1 if p# Y.
e Deduce P(¢™(n) # ¢~ (1)) KLXxE(®(p™(n)) —P(¢p~(n)))

e Will prove (next slide):
1
E(Q(p"(m) —P(p~ (M) <77 if n=~L>log(L)

e Conclude: Ty S L3log(L).
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Fast mixing of lozenge tiling dynamics

e Crucial observation: if at step n we choose site x, ZiL:o @'(x) changes on average by

1L
ZZ (Ap")(x), A=discrete Laplacian.

e Therefore, ®(¢) changes on average by

LLZ i (Ag’ )(x)sm(”x) =iL2 i ¢ (x)A(sm(”x))

2

e Note: A(sin(Z)) = —Asin(Z), A~



Fast mixing of lozenge tiling dynamics

Crucial observation: if at step n we choose site x, ZiL:o @'(x) changes on average by

L 1

2Z (Ap")(x), A=discrete Laplacian.
=l

Therefore, ®(¢) changes on average by

-1 L
LLZ‘; A(p)(x)sm<mc)=iL

2

Note: A(sin(2)) = —Agsin(Z), Ap~s
wrapping up: E(®(¢(1))) — E(®(p(n—1))) = —5-E(P(p(n—1)))

i 7 (x)A(sm( s ) )

IIMI



Fast mixing of lozenge tiling dynamics

Conclusion:

e Iterating,

A n
E(@(p* (1) = Plp~m) = (1-57 ) E(@(g™(0)) =~ Blp™(0)))

~ e "M/CDE(D(¢T(0)) — D (¢ (0)))
e BE(D(g*(0)) —P(p(0)))

7.[2
[3¢ 0

Q

Q

1
< 72 1fn2L3log(L).

e Argument (almost immediately) implies also y = % exactly!



Exercises: session I

Exercise 14. Prove the following: any random walk on a (finite) tree T is a reversible Markov chain. Find
the stationary measure in terms of the transition matrix P.

Exercise 15. Prove that Var,(P"f) < Var,(f)(1— 7)?" and that 7 is the largest constant such that this holds
for every function f.

Exercise 16. Let g€ N,G= (V,E) a graph of maximal degree A. Define a reversible MC on the set of perfect
g-colorings of G such that it is irreducible for g large (for instance, > 2A).

Exercise 17. Prove that the elementary-rotation dynamics on a finite, planar, bipartite graph G is irre-
ducible.

Exercise 18. Let X be a RW on N? with transition probabilities P((x,y), (x+1,y)) =P((x,y+1),(x,y))=p,

P((x,y),(x—1,¥))=P((x,y—1),(x,y)) = (1 —p) /2 assuming that the endpoint is in N2, otherwise X stays
put. Compute the stationary measure 7.



Exercises: session II 14/44

Exercise 19. Prove that the elementary-rotation dynamics on a finite, planar, bipartite graph G is irre-
ducible.

Exercise 20. Deduce that there exists a configuration with maximal height

Exercise 21. Prove Tie1 =< N, Tie1 = O(1) for biased RW on {1, ..., N} (jump probabilities p # q) using path
coupling with exponential metric

Exercise 22. Prove that the Ising Glauber dynamic on G = (V, E) has Tix <|VIlog(IV]) and 7y = V|~ for B
sufficiently small (depending on the maximal degree of G)

Exercise 23. Prove that the symmetric corner-flip dynamic admits a global monotone coupling

&
/t\\

—~ —~
9004880808 80008000

Exercise 24. Prove that the dimer dynamic on a planar, bipartite finite graph admits a global Markovian
monotone coupling.



