SFB summer school

Markov chain mixing: an introduction, and applications to statistical mechanics

Fabio Toninelli – TU Wien

Plan (tentative)

1. Lecture I

- Motivations: MC, sampling, enumeration
- Examples: Ising, (monomer)-dimer, graph coloring, matchings,...
- Speed of convergence: T_{mix} , spectral gap

2. Lecture II

- Some classical tools: (path) coupling, canonical paths, bottleneck ratio,...
- Examples: fast mixing for monomers-dimers with large monomer density

3. Lecture III

- Monotone MC.
- A case study: Glauber dynamics of lozenge tilings.

Goals:

• sample (exactly or approximately) from a *complicated* probability measure $\pi(\sigma) \propto w(\sigma)$, $\sigma \in \Omega$, $|\Omega| \gg 1$

Ex 1 : $\Omega = \{\text{proper colorings of graph } G\}, w \equiv 1$

Ex 2: $\Omega = \{\text{matchings of } G\}, w = e^{\lambda |\{\text{edges of } \sigma\}|}$

Ex 3: Ising.
$$G = (V, E), \Omega = \{-1, +1\}^V, w(\sigma) = e^{\beta \sum_{(x,y) \in E} \sigma_x \sigma_y}$$

• Enumerate (exactly or approximately). More generally, compute/estimate $\sum_{\sigma \in \Omega} w(\sigma)$

Ex 1: $\sum_{\sigma} w(\sigma) = \#\{\text{proper colorings of } G\}$

Ex 3:
$$\sum_{\sigma} w(\sigma) = Z_{\beta,G}$$

Other classical example: card shuffling. $\Omega = S_n$ (symmetric group)

Common features: many "degrees of freedom", Ω large.

Hard to sample directly. Better option: MC simulation

(e.g. graph matchings: simple-minded "rejection sampling" vs MCMC)

Basic idea:

- define ergodic MC $X = (X_n)_{n \ge 0}$ on Ω with stationary distribution π
- wait "long enough": $\mathbb{P}(X_n = \sigma) \xrightarrow{n \to \infty} \pi(\sigma)$
- how long is "long enough"?
- math goal: results of the type "if $n > f(|\Omega|, \varepsilon)$ then $||\mathbb{P}(X_n = \cdot) \pi(\cdot)|| < \varepsilon$. Useful for simulations if f does not grow too fast with $|\Omega|, \varepsilon^{-1}$.

NB: efficient algorithm vs. "physically relevant" algorithm

Sampling⇒Counting

Meta-theorem: fast approximate sampling algorithm implies fast approximate counting algorithm.

Example: $\mathcal{M}(G) = \{\text{matchings of } G = (V, E)\}, \pi = \text{uniform}$

(For those interested: see [M. Jerrum's book: "Counting, sampling and integrating: Algorithms and complexity"])

• assume: MC samples from π with error ε in time $T(|V|, |E|, \varepsilon)$ (for every G)

Sampling⇒Counting

Meta-theorem: fast approximate sampling algorithm implies fast approximate counting algorithm.

Example: $\mathcal{M}(G) = \{\text{matchings of } G = (V, E)\}, \pi = \text{uniform}$

(For those interested: see [M. Jerrum's book: "Counting, sampling and integrating: Algorithms and complexity"])

- assume: MC samples from π with error ε in time $T(|V|, |E|, \varepsilon)$ (for every G)
- then: we can approximate $|\mathcal{M}(G)|$ in time $\mathcal{T}(|V|, |E|, \varepsilon) \lesssim |E|^2 \times \varepsilon^{-2} \times \mathcal{T}(|V|, |E|, \varepsilon / (6|E|))$

Sampling⇒Counting

Meta-theorem: fast approximate sampling algorithm implies fast approximate counting algorithm.

Example: $\mathcal{M}(G) = \{\text{matchings of } G = (V, E)\}, \pi = \text{uniform}$

(For those interested: see [M. Jerrum's book: "Counting, sampling and integrating: Algorithms and complexity"])

- assume: MC samples from π with error ε in time $T(|V|, |E|, \varepsilon)$ (for every G)
- then: we can approximate $|\mathcal{M}(G)|$ in time $\mathcal{T}(|V|, |E|, \varepsilon) \lesssim |E|^2 \times \varepsilon^{-2} \times \mathcal{T}(|V|, |E|, \varepsilon / (6|E|))$
- Note: if $T(|V|, |E|, \varepsilon)$ is polynomial in $|V|, |E|, \varepsilon^{-1}$ then $T(|V|, |E|, \varepsilon)$ is, too.

Markov chain notations

• P: transition matrix. $P = (P(\sigma, \eta))_{\sigma, \eta \in \Omega}$ $\mathbb{P}(X_n = \eta | X_{n-1} = \sigma) = P(\sigma, \eta)$

• if
$$\sigma \in \Omega$$
, \mathbb{P}_{σ} : law of process X started from $X_0 = \sigma$. If ν is distribution on Ω , then \mathbb{P}_{ν} : law of process started from $X_0 \sim \nu$. P_{ν}^t : law of X_t started from $X_0 \sim \nu$.

• assume irreducibility (ergodicity) + aperiodicity. π unique stationary distribution

$$\pi P = \pi$$
, that is, $\mathbb{P}_{\pi}(X_n = \sigma) = \pi(\sigma)$

General theory: $\mathbb{P}_{\nu}(X_n = \sigma) = (\nu P^n)(\sigma) \xrightarrow{n \to \infty} \pi(\sigma)$ exp. fast (not quantitative)

• We will deal with reversible MC, i.e., $\pi(\sigma)P(\sigma,\eta) = \pi(\eta)P(\eta,\sigma)$ Implies stationarity and time-reversal symmetry

Example 1: Ising

$$G = (V, E)$$
 finite graph. $\Omega = \{-1, +1\}^V$. $\sigma = (\sigma_x)_{x \in V} \in \Omega$, $\beta > 0$.

Boltzmann distribution:
$$\pi(\sigma) = \frac{e^{\beta \sum_{(x,y) \in E} \sigma_x \sigma_y}}{Z_{\beta,G}}$$

Define MC $(\sigma(n))_{n\geq 0}$ on Ω as follows:

- start from $\sigma(0) \in \Omega$
- at step n, choose $x \in V$ uniformly at random
- define $\sigma(n)$ as $\sigma(n)_y = \sigma(n-1)_y$ if $y \neq x$ and sample $\sigma(n)_x$ from

 $\pi(\cdot|\sigma_{V\setminus\{x\}}=\sigma(n-1)_{V\setminus\{x\}})$. Explicitly, $\sigma(n)_x$ is chosen to be $\varepsilon=\pm 1$ with probability

$$\frac{e^{\beta\varepsilon\sum_{y:(x,y)\in E}\sigma(n-1)_y}}{\sum_{\varepsilon=+1}e^{\beta\varepsilon\sum_{y:(x,y)\in E}\sigma(n-1)_y}} = \frac{e^{\beta\varepsilon\sum_{y:(x,y)\in E}\sigma(n-1)_y}}{2\cosh(\beta\sum_{y:(x,y)\in E}\sigma(n-1)_y)}$$
(1)

Example 1: Ising

Exercise 1. Write down the transition matrix *P*

Exercise 2. Prove that the MC is reversible: $\pi(\sigma)P(\sigma,\eta) = \pi(\eta)P(\eta,\sigma)$

Exercise 3. Prove that the MC is aperiodic irreducible: for every $\sigma, \sigma' \in W$ there exists a path $\sigma(n), 0 \le n \le M$ with $\sigma(0) = \sigma, \sigma(M) = \sigma'$ and $P(\sigma_n, \sigma_{n+1}) > 0$.

Remark. The transition rate

$$\frac{e^{\beta \varepsilon \sum_{y:(x,y)\in E}\sigma(n-1)y}}{2\cosh(\beta \sum_{y:(x,y)\in E}\sigma(n-1)y)}$$
(2)

is a local function of $\sigma(n-1)$ around x. Does not require to compute $Z_{\beta,G}$!

Example 2: monomer-dimer model

G = (V, E) finite graph. $\lambda > 0$ "fugacity parameter". $\Omega = \mathcal{M}(G) = \{\text{matchings of } G\}$.

NB: not just perfect matchings.

Each $M \in \Omega$ is a subset of E. $e \in M$: "dimer at e". $x \in V$ unmached in M: "monomer at x".

Call m(M) the number of monomers of M. Boltzmann distribution:

$$\pi(M) = \frac{\lambda^{m(M)}}{\sum_{M' \in \Omega} \lambda^{m(M')}} = \frac{\lambda^{m(M)}}{Z_{\lambda,G}}.$$
(3)

Note: for $\lambda \to 0$, π supported by maximal matchings.

Define MC $(M(n))_{n\geq 0}$ on Ω as follows:

- start from $M(0) \in \Omega$
- at step n, choose $e = (x, y) \in E$ uniformly at random
- call $\tilde{M}(n-1) = M(n-1) \setminus \{(x,y)\}$. (NB: it may or may not coincide with M(n-1))
- if either x or y belong to an edge of M(n-1), do nothing
- otherwise, let $M(n) = \tilde{M}(n-1) \cup \{(x,y)\}$ with probability $\frac{1}{1+\lambda^2}$ and $M(n) = \tilde{M}(n-1)$ with probability $\frac{\lambda^2}{1+\lambda^2}$

Exercise 4. Check irreducibility, aperiodicity and reversibility.

Remark. If $\lambda = 0$, irreducibility can fail. There are better algorithms

Example 3: planar dimer model

G = (V, E) finite, **planar** graph. $\Omega = \{\text{perfect matchings of } G\}$. Given $e \in E$, let $w_e > 0$: edge weight. Assume that G admits perfect matchings.

E.g.: $G = \{1, ..., N\} \times \{1, ..., 2L\}$ with nearest-neighbor edges.

If $M \in \Omega$, $e \in M$ we say that "e is occupied by a dimer in M"

Boltzmann distribution
$$\pi(M) = \frac{\prod_{e \in M} w_e}{\sum_{M' \in \Omega} \prod_{e \in M'} w_{e'}}$$

Given face f of G and $M \in \Omega$, write ∂f for the collection of edges around f.

Say that "a rotation at f is possible in M" if every second edge of ∂f belongs to M. In this case, call $M^f \in \Omega$ the configuration where occupied/empty edges of ∂f switch roles, and nothing else changes.

NB: rotation possible only at faces f with $|\partial f|$ even.

Example 3: planar dimer model

Introduce MC $(M(n))_{n\geq 0}$ as follows:

- start from $M(0) \in \Omega$
- at each step, choose an (inner) face *f* uniformly at random
- if a rotation at f is possible in M(n-1), then let $M(n) = M(n-1)^f$ with probability

$$p = \frac{\prod_{e \in \partial f: e \notin M(n-1)} w_e}{\prod_{e \in \partial f: e \notin M(n-1)} w_e + \prod_{e \in \partial f: e \in M(n-1)} w_e}$$
(4)

and M(n) = M(n-1) with probability 1-p.

• if the rotation at f is not possible in M(n-1), do nothing.

Exercise 5. (Non trivial). If *G* is bipartite, then the MC is irreducible.

Speed of convergence

General theory: irreducible, aperiodic MC on finite state space:

$$|\mathbb{P}_{\nu}(X_n = \sigma) - \pi(\sigma)| \leqslant Ce^{-cn}. \tag{5}$$

 C, c^{-1} depend on Ω , can diverge as $|\Omega| \to \infty$.

PB: quantify speed of convergence. Several classical ways, among which:

- 1. Total variation distance mixing time (T_{mix})
- 2. Mixing time w.r.t other distances (L^p , Hellinger distance, separation distance...)
- 3. spectral gap/relaxation time $T_{\rm rel}$
- 4. log-Sobolev constant, relative entropy

In these lectures, we focus on 1 and 3. "Coupling arguments" adapt well to T_{mix} , spectral/variational arguments to T_{rel} .

(Total variation) mixing time

(classical book: Levin and Peres, Markov chains and Mixing times)

Definition (**Total variation distance**) Let μ , ν be probability measures on finite set Ω . Then,

$$\|\nu - \mu\| = \frac{1}{2} \sum_{A \in \Omega} |\mu(x) - \nu(x)| = \max_{A \in \Omega} |\mu(A) - \nu(A)| = \inf \{ \mathbb{P}(X \neq Y) : X \sim \mu, Y \sim \nu \}.$$
 (6)

Exercise 6. It is indeed a distance. Try to prove the equalities.

Definition (Mixing time) Let $\varepsilon \in (0,1)$, X be Markov Chain on Ω . Then,

$$T_{\text{mix}}(\varepsilon) = \inf \left\{ n \geqslant 0 : \max_{x \in \Omega} \|P_x^n - \pi\| < \varepsilon \right\}. \tag{7}$$

NB: worst-case initial condition $(\max_{x \in \Omega})$.

Let X be a reversible MC on Ω .

Define
$$\langle f, g \rangle_{\pi} := \sum_{x \in \Omega} f(x) g(x) \pi(x)$$
 for $f, g: \Omega \mapsto \mathbb{R}$.

Reversibility implies $\langle f, Pg \rangle_{\pi} = \langle Pf, g \rangle_{\pi}$: *P* is self-adjoint

Easy/classical facts:

- Spectrum $(\lambda_i)_{i \leq |\Omega|}$ is real. $\lambda_1 \geqslant \lambda_2 \geqslant \cdots$
- $|\lambda_i| \leq 1$
- Up to redefining $P \to \frac{(I+P)}{2}$, we can assume that $0 \le \lambda_i \le 1$
- Irreducibility $\Rightarrow \lambda_1 = 1$ is simple.

Note: P 1 = 1, $\pi P = P$

Spectral gap/Relaxation time

Definition (**Spectral gap**) *Let X be reversible.* We define the spectral gap equivalently as

- 1. $\gamma = 1 \lambda_2 > 0$. Relaxation time $T_{\text{rel}} := \frac{1}{\gamma}$.
- 2. (Variational principle)

$$\gamma = \inf_{f:\Omega \to \mathbb{R}, \operatorname{Var}_{\pi}(f) \neq 0} \frac{\mathcal{E}(f)}{\operatorname{Var}_{\pi}(f)}$$
(8)

where
$$\mathcal{E}(f) = \langle (I-P)f, f \rangle_{\pi} = \frac{1}{2} \sum_{x,y \in \Omega} \pi(x) P(x,y) |f(x) - f(y)|^2$$
 (Dirichlet form)

3. (L² relaxation) γ is the best (i.e. largest) constant such that for all $n \in \mathbb{N}$, $f: \Omega \mapsto \mathbb{R}$

$$\operatorname{Var}_{\pi}(P^{n}f) \leqslant \operatorname{Var}_{\pi}(f)(1-\gamma)^{2n} \tag{9}$$

• $T_{\text{mix}}(\varepsilon)$ decreases with ε (obvious) and

$$T_{\text{mix}}(\varepsilon) \leqslant \lceil \log_2(\varepsilon^{-1}) \rceil T_{\text{mix}}\left(\frac{1}{4}\right)$$
 (10)

that is, at time $m T_{\text{mix}}(\frac{1}{4})$ the variation distance from equilibrium is at most 2^{-m} .

• General $T_{\text{mix}}/T_{\text{rel}}$ comparison:

$$(T_{\text{rel}} - 1)\log\left(\frac{1}{2\varepsilon}\right) \leqslant T_{\text{mix}}(\varepsilon) \leqslant T_{\text{rel}}\log\left(\frac{1}{\varepsilon \min_{x \in \Omega} \pi(x)}\right).$$

• Meta-statement: upper bounds on T_{mix} , T_{rel} are harder to get than lower bounds. In fact, $T_{\text{mix}}(\varepsilon) \gtrsim_{\varepsilon} T_{\text{rel}} \geqslant \frac{\text{Var}_{\pi}(f)}{\varepsilon(f)}$ for any test function $f: \Omega \mapsto \mathbb{R}$.

T_{mix} upper bounds and coupling

Advantage of total variation distance in the definition of T_{mix} : variational characterization of $\|\mu - \nu\|$ in terms of optimal coupling.

Coupling methods powerful in estimating T_{mix} .

Warm-up result:

Proposition For every $x, y \in \Omega$, let $(X_n, Y_n)_{n \ge 0}$ be a coupling of the processes started at (x, y). Call $\tau_{\text{couple}} = \min \{n: X_n = Y_n\}$ and $\mathbb{P}_{x,y}$ the distribution of $(X_n, Y_n)_{n \ge 0}$.

If $\max_{x,y\in\Omega} \mathbb{P}_{x,y}(\tau_{\text{couple}} > n) < \varepsilon$, then $T_{\text{mix}}(\varepsilon) \leq n$.

Example: lazy RW on $\{1, ..., n\}$, $T_{\text{mix}} \lesssim n^2$.

T_{mix} upper bounds and coupling

Proof. Assume wlog that $X_n = Y_n$ for $n \ge \tau_{\text{couple}}$. Then,

$$||P_x^n - P_y^n|| = \inf \{ \mathbb{P}(X \neq Y) : X \sim P_x^n, Y \sim P_y^n \} \leqslant \mathbb{P}(X_n \neq Y_n) = \mathbb{P}_{x,y}(\tau_{\text{couple}} > n).$$
 (11)

We deduce $\max_{x,y\in\Omega} ||P_x^n - P_y^n|| < \varepsilon$.

Now note that

$$||P_{x}^{n} - \pi|| = \max_{A \subset \Omega} |P_{x}^{n}(A) - \pi(A)| = \max_{A \subset \Omega} \left| \sum_{y \in \Omega} \pi(y) [P_{x}^{n}(A) - P_{y}^{n}(A)] \right|$$

$$\leq \sum_{y \in \Omega} \pi(y) \max_{A \subset \Omega} |P_{x}^{n}(A) - P_{y}^{n}(A)| = \sum_{y \in \Omega} \pi(y) ||P_{x}^{n} - P_{y}^{n}|| < \varepsilon.$$

Drawback: in general, difficult to control τ_{couple} . Better idea: "path coupling".

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be connected a graph with $\mathcal{V} = \Omega$. Assign $\mathcal{E} \ni e \mapsto \ell_e \geqslant 1$ "length".

 ρ : induced graph distance on \mathcal{G} . ρ_K : Kantorovich transportation distance between distributions on Ω :

$$\rho_K(\mu,\nu) = \inf \{ \mathbb{E}(\rho(X,Y)) : X \sim \mu, Y \sim \nu \} \}.$$

Since $\rho(x,y) \geqslant \mathbf{1}_{x\neq y}$, it follows $\|\mu - \nu\| \leqslant \rho_K(\mu,\nu)$.

Path coupling(reversible) invariant method

Theorem (Bubley-Dyer '97) Assume that there exists $\alpha < 1$ and, for every $x \sim^{\mathcal{G}} y$, a coupling (X,Y) of $P(x,\cdot), P(y,\cdot)$ such that $\mathbb{E}(\rho(X,Y)) \leq \rho(x,y)e^{-\alpha}$. Then, $\rho_K(\mu P, \nu P) \leq e^{-\alpha}\rho_K(\mu,\nu)$.

Immediate consequence:

$$||P_{\nu}^{n} - P_{\mu}^{n}|| \leq \rho_{K}(\nu P^{n}, \mu P^{n}) = \rho_{K}(\nu P^{n-1}P, \mu P^{n-1}P)$$

$$\leq e^{-\alpha}\rho_{K}(\nu P^{n-1}, \mu P^{n-1})$$

$$(\text{iterate}) \leq e^{-\alpha n}\rho_{K}(\mu, \nu) \leq e^{-\alpha n} \text{diam}_{\rho}(\Omega)$$

Corollary The mixing time is $T_{\text{mix}}(\varepsilon) \leqslant \frac{\log\left(\frac{\operatorname{diam}_{\rho}(\Omega)}{\varepsilon}\right)}{\alpha}$ (one can also deduce $\gamma \geqslant 1 - e^{-\alpha}$).

Advantage: needs to check contraction only after 1 step, and for $x \sim^{\mathcal{G}} y$.

Drawback: if condition fails even for one pair $x \sim^{\mathcal{G}} y$, theorem does not apply.

Recall: G = (V, E) finite graph. $\lambda > 0$ "fugacity parameter". $\Omega = \mathcal{M}(G) = \{\text{matchings of } G\}$.

Boltzmann distribution: $\pi(M) \propto \lambda^{m(M)}$.

- at step n, choose $e = (x, y) \in E$ uniformly at random
- call $\tilde{M}(n-1) = M(n-1) \setminus \{(x,y)\}.$
- if either x or y belong to an edge of $\tilde{M}(n-1)$, do nothing
- otherwise, let $M(n) = \tilde{M}(n-1) \cup \{(x,y)\}$ with probability $\frac{1}{1+\lambda^2}$, $M(n) = \tilde{M}(n-1)$ else

Define $G = (\Omega, \mathcal{E})$ with $(M, M') \in \mathcal{E}$ iff $M = M' \cup \{e\}$. Set $\ell_{(M, M')} = 1$, i.e., ρ is usual graph distance, i.e., $\rho(M, M') = \sum_{e} |\mathbf{1}_{e \in M} - \mathbf{1}_{e \in M'}|$. Let Δ_G be the maximal degree of G.

Proposition Fix $\Delta > 0$. There exists $\lambda_0(\Delta) < \infty$ such that path coupling works with $\alpha = 1/(2|E|)$, for all $\lambda > \lambda_0$ and graphs with $\Delta_G \leq \Delta$.

• let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.

- let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.
- Goal: couple $X \sim P(M, \cdot), Y \sim P(M', \cdot)$ so that $\mathbb{E}(\rho(X, Y)) \leq e^{-\alpha} < 1$ with $\alpha \sim \frac{1}{|E|}$

- let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.
- Goal: couple $X \sim P(M, \cdot), Y \sim P(M', \cdot)$ so that $\mathbb{E}(\rho(X, Y)) \leq e^{-\alpha} < 1$ with $\alpha \sim \frac{1}{|E|}$
- Note: in M', monomers at x and y.

- let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.
- Goal: couple $X \sim P(M, \cdot), Y \sim P(M', \cdot)$ so that $\mathbb{E}(\rho(X, Y)) \leq e^{-\alpha} < 1$ with $\alpha \sim \frac{1}{|E|}$
- Note: in M', monomers at x and y.
- Pick $e' \in E$ uniformly at random. If $x \notin e', y \notin e'$, do same move for both processes. Distance unchanged

- let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.
- Goal: couple $X \sim P(M, \cdot), Y \sim P(M', \cdot)$ so that $\mathbb{E}(\rho(X, Y)) \leq e^{-\alpha} < 1$ with $\alpha \sim \frac{1}{|E|}$
- Note: in M', monomers at x and y.
- Pick $e' \in E$ uniformly at random. If $x \notin e', y \notin e'$, do same move for both processes. Distance unchanged
- If e = e', do same move for both. Distance decreases by 1

- let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.
- Goal: couple $X \sim P(M, \cdot), Y \sim P(M', \cdot)$ so that $\mathbb{E}(\rho(X, Y)) \leq e^{-\alpha} < 1$ with $\alpha \sim \frac{1}{|E|}$
- Note: in M', monomers at x and y.
- Pick $e' \in E$ uniformly at random. If $x \notin e', y \notin e'$, do same move for both processes. Distance unchanged
- If e = e', do same move for both. Distance decreases by 1
- If $e' = (x, u), u \neq y$ (there are at most Δ_G such cases) then $e' \notin M, e' \notin M$.

- let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.
- Goal: couple $X \sim P(M, \cdot), Y \sim P(M', \cdot)$ so that $\mathbb{E}(\rho(X, Y)) \leq e^{-\alpha} < 1$ with $\alpha \sim \frac{1}{|E|}$
- Note: in M', monomers at x and y.
- Pick $e' \in E$ uniformly at random. If $x \notin e', y \notin e'$, do same move for both processes. Distance unchanged
- If e = e', do same move for both. Distance decreases by 1
- If $e' = (x, u), u \neq y$ (there are at most Δ_G such cases) then $e' \notin M, e' \notin M$.

For process started at M, no move possible. For the other, put edge with probability $1/(1+\lambda^2)$. Distance increases by 1 with probability $1/(1+\lambda^2)$.

- let $M, M' \in \Omega, e = (x, y) \in E, e \notin M', M = M' \cup \{e\}$. Note $\rho(M, M') = 1$.
- Goal: couple $X \sim P(M, \cdot), Y \sim P(M', \cdot)$ so that $\mathbb{E}(\rho(X, Y)) \leq e^{-\alpha} < 1$ with $\alpha \sim \frac{1}{|E|}$
- Note: in M', monomers at x and y.
- Pick $e' \in E$ uniformly at random. If $x \notin e', y \notin e'$, do same move for both processes. Distance unchanged
- If e = e', do same move for both. Distance decreases by 1
- If $e' = (x, u), u \neq y$ (there are at most Δ_G such cases) then $e' \notin M, e' \notin M$. For process started at M, no move possible. For the other, put edge with probability $1/(1+\lambda^2)$. Distance increases by 1 with probability $1/(1+\lambda^2)$.
- Altogether, new average distance is $\leq 1 + \frac{1}{|E|} \left(-1 + 2 \frac{\Delta_G}{1 + \lambda^2} \right) \leq e^{-1/(2|E|)}$ if $\lambda \gg \sqrt{\Delta_G}$.

Other examples of application of path coupling:

• Ising dynamics for $\beta \leq \beta_0(\Delta_G)$ (keyword: Dobrushin's uniqueness condition)

Other examples of application of path coupling:

- Ising dynamics for $\beta \leq \beta_0(\Delta_G)$ (keyword: Dobrushin's uniqueness condition)
- perfect colorings for $q > 2\Delta_G$

Other examples of application of path coupling:

- Ising dynamics for $\beta \leq \beta_0(\Delta_G)$ (keyword: Dobrushin's uniqueness condition)
- perfect colorings for $q > 2\Delta_G$
- hardcore model with small fugacity λ . $\pi(x) \propto \lambda^{\sum_{v \in V} x_v}$, $x \in \{0,1\}^V$, $x_v x_w = 0$ if $v \sim w$

Other examples of application of path coupling:

- Ising dynamics for $\beta \leq \beta_0(\Delta_G)$ (keyword: Dobrushin's uniqueness condition)
- perfect colorings for $q > 2\Delta_G$
- hardcore model with small fugacity λ . $\pi(x) \propto \lambda^{\sum_{v \in V} x_v}$, $x \in \{0,1\}^V$, $x_v x_w = 0$ if $v \sim w$
- biased RW on $\{1,\ldots,N\}$. Let $p \in (1/2,1)$ and

$$P(x,y) = \begin{cases} 1/2 & \text{if } x = y \notin \{1,N\} \\ p/2 & \text{if } y = x+1, 1 \le x < N \\ (1-p)/2 & \text{if } y = x-1, 1 < x \le N \\ 1-p/2 & \text{if } x = y = 1 \\ 1-(1-p)/2 & \text{if } x = y = N \end{cases}$$

Path coupling method

Other examples of application of path coupling:

- Ising dynamics for $\beta \leq \beta_0(\Delta_G)$ (keyword: Dobrushin's uniqueness condition)
- perfect colorings for $q > 2\Delta_G$
- hardcore model with small fugacity λ . $\pi(x) \propto \lambda^{\sum_{v \in V} x_v}$, $x \in \{0,1\}^V$, $x_v x_w = 0$ if $v \sim w$
- biased RW on $\{1,\ldots,N\}$. Let $p \in (1/2,1)$ and

$$P(x,y) = \begin{cases} 1/2 & \text{if } x = y \notin \{1,N\} \\ p/2 & \text{if } y = x+1, 1 \leqslant x < N \\ (1-p)/2 & \text{if } y = x-1, 1 < x \leqslant N \\ 1-p/2 & \text{if } x = y = 1 \\ 1-(1-p)/2 & \text{if } x = y = N \end{cases}$$

• In latter example, "exponentially tilted metric"

For every $x, y \in \Omega$ fix a "canonical path" $\Gamma_{x \to y}$ of allowed transitions *e* from *x* to *y*.

Given $f: \Omega \mapsto \mathbb{R}$ write

$$\begin{aligned} 2\mathrm{Var}_{\pi}(f) &= \sum_{x,y} \pi(x)\pi(y)((f(x)-f(y))^2) \ = \ \sum_{x,y} \pi(x)\pi(y) \left(\left(\sum_{e \in \Gamma_{x \to y}} \nabla_{e} f \right)^2 \right) \\ &= \ \sum_{x,y} \pi(x)\pi(y)|\Gamma_{x \to y}|^2 \left(\left(\frac{1}{|\Gamma_{x \to y}|} \sum_{e \in \Gamma_{x \to y}} \nabla_{e} f \right)^2 \right) \\ &\leqslant \ \sum_{x,y} \pi(x)\pi(y)|\Gamma_{x \to y}| \sum_{e \in \Gamma_{x \to y}} |\nabla_{e} f|^2. \\ &= \ \sum_{x,y} \pi(x)\pi(y)|\Gamma_{x \to y}| \sum_{(a,b) \in \Gamma_{x \to y}} |f(a)-f(b)|^2 \end{aligned}$$

Summarizing: $\operatorname{Var}_{\pi}(f) \leq \frac{1}{2} \sum_{x,y} \pi(x) \pi(y) |\Gamma_{x \to y}| \sum_{(a,b) \in \Gamma_{x \to y}} \frac{\pi(a) P(a,b)}{\pi(a) P(a,b)} |f(a) - f(b)|^2$.

Now recall

$$\mathcal{E}(f) = \frac{1}{2} \sum_{x,y \in O} \pi(x) P(x,y) |f(x) - f(y)|^2$$

Reorganizing the sum, deduce

$$\operatorname{Var}_{\pi}(f) \leqslant M \,\mathcal{E}(f), \quad M = \max_{e = (a,b)} \left(\sum_{x,y: \Gamma_{x \to y} \ni (a,b)} \frac{\pi(x)\pi(y)}{Q(e)} |\Gamma_{x \to y}| \right), \quad Q(e) = \pi(a)P(a,b).$$

(M:"congestion ratio") and

$$\gamma = \frac{1}{T_{\text{rel}}} = \inf_{f} \frac{\mathcal{E}(f)}{\text{Var}_{\pi}(f)} \geqslant \frac{1}{M}.$$

Applications of canonical paths

- SRW on $\{1,...,N\}^d$
- $T_{\rm rel} \lesssim N$ for two glued copies of K_N
- $T_{\text{rel}} \leq e^{O(L^{d-1})}$ for Ising on $\{1, \dots, L\}^d$
- $T_{\text{rel}} \lesssim_{\lambda} |V| |E|$ for matchings of (V, E). λ =monomer "fugacity" (see Jerrum's book, Sec. 5.3)

Given $x \neq y \in \Omega$, replace single path $\Gamma_{x \to y}$ with a "multicommodity flow" f (Sinclair '92)

 $\mathcal{P}_{x \to y}$: directed simple paths from x to y. $\mathcal{P} = \bigcup_{x \neq y} \mathcal{P}_{x \to y}$

• flow f is map $f: \mathcal{P} \mapsto \mathbb{R}^+$, with

Given $x \neq y \in \Omega$, replace single path $\Gamma_{x \to y}$ with a "multicommodity flow" f (Sinclair '92)

 $\mathcal{P}_{x \to y}$: directed simple paths from x to y. $\mathcal{P} = \bigcup_{x \neq y} \mathcal{P}_{x \to y}$

• flow f is map $f: \mathcal{P} \mapsto \mathbb{R}^+$, with

$$\sum_{p \in \mathcal{P}_{x \to y}} f(p) = \pi(x)\pi(y)$$

Given $x \neq y \in \Omega$, replace single path $\Gamma_{x \to y}$ with a "multicommodity flow" f (Sinclair '92)

 $\mathcal{P}_{x \to y}$: directed simple paths from x to y. $\mathcal{P} = \bigcup_{x \neq y} \mathcal{P}_{x \to y}$

• flow f is map $f: \mathcal{P} \mapsto \mathbb{R}^+$, with

$$\sum_{p \in \mathcal{P}_{x \to y}} f(p) = \pi(x)\pi(y)$$

• define for e = (a, b) with positive conductance $Q(e) = \pi(a)P(a, b)$

Given $x \neq y \in \Omega$, replace single path $\Gamma_{x \to y}$ with a "multicommodity flow" f (Sinclair '92)

 $\mathcal{P}_{x \to y}$: directed simple paths from x to y. $\mathcal{P} = \bigcup_{x \neq y} \mathcal{P}_{x \to y}$

• flow f is map $f: \mathcal{P} \mapsto \mathbb{R}^+$, with

$$\sum_{p \in \mathcal{P}_{x \to y}} f(p) = \pi(x)\pi(y)$$

• define for e = (a, b) with positive conductance $Q(e) = \pi(a)P(a, b)$

$$\bar{f}(e) = \sum_{p \ni e} f(p)|p|, \quad M(f) = \max_{e} \frac{\bar{f}(e)}{Q(e)}$$

Given $x \neq y \in \Omega$, replace single path $\Gamma_{x \to y}$ with a "multicommodity flow" f (Sinclair '92)

 $\mathcal{P}_{x \to y}$: directed simple paths from x to y. $\mathcal{P} = \bigcup_{x \neq y} \mathcal{P}_{x \to y}$

• flow f is map $f: \mathcal{P} \mapsto \mathbb{R}^+$, with

$$\sum_{p \in \mathcal{P}_{x \to y}} f(p) = \pi(x)\pi(y)$$

• define for e = (a, b) with positive conductance $Q(e) = \pi(a)P(a, b)$

$$\bar{f}(e) = \sum_{p \ni e} f(p)|p|, \quad M(f) = \max_{e} \frac{\bar{f}(e)}{Q(e)}$$

• With same proof as above: $\gamma = \frac{1}{T_{\text{rel}}} = \inf_{f} \frac{\mathcal{E}(f)}{\operatorname{Var}_{\pi}(f)} \geqslant \frac{1}{M(f)}$

Idea:

• for every $x \neq y$, want to transport quantity $\pi(x)\pi(y)$ from x to y.

Idea:

- for every $x \neq y$, want to transport quantity $\pi(x)\pi(y)$ from x to y.
- rather than deterministic path $\Gamma_{x \to y}$, random path with weight

Idea:

- for every $x \neq y$, want to transport quantity $\pi(x)\pi(y)$ from x to y.
- rather than deterministic path $\Gamma_{x \to y}$, random path with weight

$$w(p) = \frac{f(p)}{\pi(x)\pi(y)} \mathbf{1}_{p \in \mathcal{P}_{x \to y}}.$$

Idea:

- for every $x \neq y$, want to transport quantity $\pi(x)\pi(y)$ from x to y.
- rather than deterministic path $\Gamma_{x \to y}$, random path with weight

$$w(p) = \frac{f(p)}{\pi(x)\pi(y)} \mathbf{1}_{p \in \mathcal{P}_{x \to y}}.$$

diversification decreases congestion rate.

Idea:

- for every $x \neq y$, want to transport quantity $\pi(x)\pi(y)$ from x to y.
- rather than deterministic path $\Gamma_{x \to y}$, random path with weight

$$w(p) = \frac{f(p)}{\pi(x)\pi(y)} \mathbf{1}_{p \in \mathcal{P}_{x \to y}}.$$

diversification decreases congestion rate.

Exercise 11. For RW on complete bipartite graph $K_{2,N-2}$, prove $T_{\text{rel}} \lesssim N$ with canonical paths and $T_{\text{rel}} \lesssim 1$ with multicommodity flows.

Up to now: upper bounds on T_{mix} , T_{rel} . A useful lower bound tool: bottleneck ratio Given $S \subset \Omega$,

$$\gamma \leqslant \frac{\mathcal{E}(\mathbf{1}_{S})}{\text{Var}_{\pi}(\mathbf{1}_{S})} = \frac{1}{2} \frac{\sum_{x,y} \pi(x) P(x,y) (\mathbf{1}_{S}(x) - \mathbf{1}_{S}(y))^{2}}{\pi(S) - \pi(S)^{2}} = \frac{\sum_{x \in S, y \notin S} \pi(x) P(x,y)}{\pi(S) (1 - \pi(S))}$$

Bottleneck ratio ("isoperimetric constant")

$$\Phi \coloneqq \inf_{S \subset \Omega: \pi(S) \leqslant 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)} \Rightarrow \gamma \leqslant 2\Phi, \quad T_{\text{rel}} \geqslant \frac{1}{2\Phi}.$$

Exercise 12. $T_{\text{rel}} \gtrsim N$ for RW on two copies of K_N with one vertex in common

Exercise 13. $T_{\text{rel}} \gtrsim e^{\Omega(N)}$ for size-*N* Curie-Weiss Glauber dynamics, $\beta > \beta_c$.

Monotone dynamics and global coupling

Let \leq be a partial order on Ω . Assume \exists maximal/minimal configuration ω^+/ω^- .

Example: $\Omega = \{-1, +1\}^V, \sigma \leq \eta \text{ iff } \sigma_x \leq \eta_x \text{ for every } x \in V. \ \omega^{\pm} \equiv \pm 1.$

Example: $\Omega = \{\text{perfect matchings of } G\}$, G planar, bipartite graph.

 $\sigma \leq \eta$ iff $h_{\sigma}(f) \leq h_{\eta}(f)$ for every face f.

Definition We say that a MC on (Ω, \leq) is monotone (or "attractive")if $\forall x, y \in \Omega$ with $x \leq y$ the processes X, Y started from x, y can be coupled so that $X_n \leq Y_n$ almost surely for all $n \geq 0$.

Most useful when coupling is Markovian and global.

Monotone dynamics and global coupling

Let $\tau_{+/-} = \inf\{n \ge 0: X^+(n) = X^-(n)\}$ with $X^{+/-}$ the process started from maximal/minimal configuration ω^{\pm} . Then:

Proposition If
$$\mathbb{P}(\tau_{+/-}>N) < \varepsilon$$
 then $T_{\text{mix}}(\varepsilon) \leq N$.

Proof. Proof: Let X^x be the process started from x and X^{π} the stationary process.

Write

$$\|P_x^N - \pi\| \le \mathbb{P}(X^x(N) \ne X^\pi(N))$$
 (third definition of $\|\cdot\|$) $\le \mathbb{P}(X^+(N) \ne X^-(N))$ (by the well known sandwich principle) $= \mathbb{P}(\tau_{+/-} > N)$ (by definition of coalescence time) $< \varepsilon$ (by assumption)

so we deduce $T_{\text{mix}}(\varepsilon) \leq N$.

Let $\Omega = \{1, ..., N\}$, usual order. $\omega^+ = N, \omega^- = 1$.

$$P(x, x \pm 1) = \frac{1}{4} \text{ if } x \pm 1 \in \Omega. \ P(x, x) = \frac{1}{2} \text{ if } 1 < x < N, \ P(x, x) = \frac{3}{4} \text{ if } x \in \{1, N\}.$$

Couple $(X^x)_{x \in \Omega}$ as follows:

• at step *n* sample a uniform r.v. $U_n \sim \text{Unif}(0,1)$

Let $\Omega = \{1, ..., N\}$, usual order. $\omega^+ = N, \omega^- = 1$.

$$P(x, x \pm 1) = \frac{1}{4} \text{ if } x \pm 1 \in \Omega. \ P(x, x) = \frac{1}{2} \text{ if } 1 < x < N, \ P(x, x) = \frac{3}{4} \text{ if } x \in \{1, N\}.$$

Couple $(X^x)_{x \in \Omega}$ as follows:

- at step *n* sample a uniform r.v. $U_n \sim \text{Unif}(0,1)$
- If $U_n \le 1/2$, let $X^x(n) = X^x(n-1)$ for all x.

Let $\Omega = \{1, ..., N\}$, usual order. $\omega^+ = N, \omega^- = 1$.

$$P(x, x \pm 1) = \frac{1}{4} \text{ if } x \pm 1 \in \Omega. \ P(x, x) = \frac{1}{2} \text{ if } 1 < x < N, \ P(x, x) = \frac{3}{4} \text{ if } x \in \{1, N\}.$$

Couple $(X^x)_{x \in \Omega}$ as follows:

- at step *n* sample a uniform r.v. $U_n \sim \text{Unif}(0,1)$
- If $U_n \le 1/2$, let $X^x(n) = X^x(n-1)$ for all x.
- If $1/2 < U_n \le 3/4$, let $X^x(n) = \max(X^x(n-1) 1, 1)$

Let $\Omega = \{1, ..., N\}$, usual order. $\omega^+ = N, \omega^- = 1$.

$$P(x, x \pm 1) = \frac{1}{4} \text{ if } x \pm 1 \in \Omega. \ P(x, x) = \frac{1}{2} \text{ if } 1 < x < N, \ P(x, x) = \frac{3}{4} \text{ if } x \in \{1, N\}.$$

Couple $(X^x)_{x \in \Omega}$ as follows:

- at step *n* sample a uniform r.v. $U_n \sim \text{Unif}(0,1)$
- If $U_n \le 1/2$, let $X^x(n) = X^x(n-1)$ for all x.
- If $1/2 < U_n \le 3/4$, let $X^x(n) = \max(X^x(n-1) 1, 1)$
- If $U_n > 3/4$, let $X^x(n) = \min(X^x(n-1) + 1, N)$

Let $\Omega = \{1, ..., N\}$, usual order. $\omega^+ = N, \omega^- = 1$.

$$P(x, x \pm 1) = \frac{1}{4} \text{ if } x \pm 1 \in \Omega. \ P(x, x) = \frac{1}{2} \text{ if } 1 < x < N, \ P(x, x) = \frac{3}{4} \text{ if } x \in \{1, N\}.$$

Couple $(X^x)_{x \in \Omega}$ as follows:

- at step *n* sample a uniform r.v. $U_n \sim \text{Unif}(0,1)$
- If $U_n \le 1/2$, let $X^x(n) = X^x(n-1)$ for all x.
- If $1/2 < U_n \le 3/4$, let $X^x(n) = \max(X^x(n-1) 1, 1)$
- If $U_n > 3/4$, let $X^x(n) = \min(X^x(n-1) + 1, N)$

NB: Once $X^x = X^y$, they coincide forever. The coupling is global, montone, Markovian.

Global Markovian coupling for ferromagnetic ($\beta > 0$) Ising

• goal: find coupled processes $(X^{\sigma}(n))_{n \ge 0, \sigma \in \{-1, +1\}^{V}}$ that satisfy monotonicity

Global Markovian coupling for ferromagnetic ($\beta > 0$) Ising

- goal: find coupled processes $(X^{\sigma}(n))_{n \ge 0, \sigma \in \{-1, +1\}^{V}}$ that satisfy monotonicity
- at step n, choose vertex $x_n \in V$ uniformly at random (the same for all processes)

Global Markovian coupling for ferromagnetic ($\beta > 0$) Ising

- goal: find coupled processes $(X^{\sigma}(n))_{n \ge 0, \sigma \in \{-1, +1\}^{V}}$ that satisfy monotonicity
- at step n, choose vertex $x_n \in V$ uniformly at random (the same for all processes)
- sample a uniform variable $U_n \sim \text{Unif}((0,1))$ (the same for all processes)

Global Markovian coupling for ferromagnetic ($\beta > 0$) Ising

- goal: find coupled processes $(X^{\sigma}(n))_{n \ge 0, \sigma \in \{-1, +1\}^{V}}$ that satisfy monotonicity
- at step n, choose vertex $x_n \in V$ uniformly at random (the same for all processes)
- sample a uniform variable $U_n \sim \text{Unif}((0,1))$ (the same for all processes)
- Set $X_{x_n}^{\sigma}(n) \to 1$ if $U_n < p_{x_n}^{\sigma}(n-1)$ and $X_{x_n}^{\sigma}(n) \to -1$ if $U_n \geqslant p_{x_n}^{\sigma}(n-1)$ where

$$p_x^{\sigma}(n-1) = \frac{e^{\beta \sum_{y \sim x} X_y^{\sigma}(n-1)}}{2\cosh(\beta \sum_{y \sim x} X_y^{\sigma}(n-1))} \in (0,1)$$

Global Markovian coupling for ferromagnetic ($\beta > 0$) Ising

- goal: find coupled processes $(X^{\sigma}(n))_{n \geq 0, \sigma \in \{-1, +1\}^{V}}$ that satisfy monotonicity
- at step n, choose vertex $x_n \in V$ uniformly at random (the same for all processes)
- sample a uniform variable $U_n \sim \text{Unif}((0,1))$ (the same for all processes)
- Set $X_{x_n}^{\sigma}(n) \to 1$ if $U_n < p_{x_n}^{\sigma}(n-1)$ and $X_{x_n}^{\sigma}(n) \to -1$ if $U_n \geqslant p_{x_n}^{\sigma}(n-1)$ where

$$p_x^{\sigma}(n-1) = \frac{e^{\beta \sum_{y \sim x} X_y^{\sigma}(n-1)}}{2\cosh(\beta \sum_{y \sim x} X_y^{\sigma}(n-1))} \in (0,1)$$

• Note: $u \mapsto \frac{e^{\beta u}}{2\cosh(\beta u)}$ is increasing if $\beta \ge 0$, hence coupling is monotone.

Other classical monotone dynamics:

- hardcore model on bipartite graph G. $\omega \leq \eta$ iff $\omega_x \leq \eta_x$ for x even and $\omega_x \geq \eta_x$ for x odd. ω^{\pm} : all even/odd vertices occupied
- heat-bath dynamics on perfect matchings of planar, bipartite *G*.
- heat-bath dynamics for height models

$$\pi(h) \propto e^{-\sum_{x \sim y} V(h_x - h_y)}, \quad h: V \mapsto \mathbb{R}, V \subset \mathbb{Z}^d, \quad h_{\partial V} \equiv 0$$

with *V* symmetric and convex

Naive (wrong) idea

Let X be a MC on (Ω, \leq) that admits a global monotone Markovian coupling.

Algorithmic description of process:

- randomness is iid sequence $(\xi_n)_{n\geqslant 1}$ (e.g. for Ising: $\xi_n = (x_n, U_n), x_n \sim \text{Unif}(V), U_n \sim \text{Unif}(0,1)$)
- state of chain X(n) at time n is **deterministic** function of ξ_n and of X(n-1). Write $X(n) = F_{\xi_n}(X(n-1))$.
- Iterating, $X(n) = F_{\xi_n} \circ F_{\xi_{n-1}} \circ \dots \circ F_{\xi_1}(X(0))$

Appealing idea: stop algorithm at $\tau_{+/-}$ (coupling time of maximal/minimal configurations) and output $Z = X(\tau_{+/-}) = X^x(\tau_{+/-})$ for all initial conditions x

Problem: $\mathbb{P}(Z = \sigma) \neq \pi(\sigma)$ (e.g.: lazy RW)

• View time as running from $-\infty$ to $0: \xi = (\dots, \xi_{-2}, \xi_{-1}, \xi_0)$.

Better idea: coupling from the past (Propp-Wilson)

- View time as running from $-\infty$ to 0: $\xi = (\dots, \xi_{-2}, \xi_{-1}, \xi_0)$.
- Find

$$n_{\min} := \inf \{ n: F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^+) = F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^-) \}$$

Better idea: coupling from the past (Propp-Wilson)

- View time as running from $-\infty$ to 0: $\xi = (\ldots, \xi_{-2}, \xi_{-1}, \xi_0)$.
- Find

$$n_{\min} := \inf \{ n: F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^+) = F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^-) \}$$

(in most interesting cases, $n_{\min} < \inf ty$ a.s.)

• Output $Z := F_{\xi_0} \circ F_{\xi_{-1}} \circ \dots \circ F_{\xi_{-n_{\min}}}(\omega^{\pm}) \in \Omega$

- View time as running from $-\infty$ to 0: $\xi = (\ldots, \xi_{-2}, \xi_{-1}, \xi_0)$.
- Find

$$n_{\min} := \inf \{ n: F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^+) = F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^-) \}$$

- Output $Z := F_{\xi_0} \circ F_{\xi_{-1}} \circ \dots \circ F_{\xi_{-n_{\min}}}(\omega^{\pm}) \in \Omega$
- Claim: $Z \sim \pi$ (no bias!)

- View time as running from $-\infty$ to 0: $\xi = (\ldots, \xi_{-2}, \xi_{-1}, \xi_0)$.
- Find

$$n_{\min} := \inf \{ n: F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^+) = F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^-) \}$$

- Output $Z := F_{\xi_0} \circ F_{\xi_{-1}} \circ \dots \circ F_{\xi_{-n_{\min}}}(\omega^{\pm}) \in \Omega$
- Claim: $Z \sim \pi$ (no bias!)
- Proof: with a picture

- View time as running from $-\infty$ to 0: $\xi = (\ldots, \xi_{-2}, \xi_{-1}, \xi_0)$.
- Find

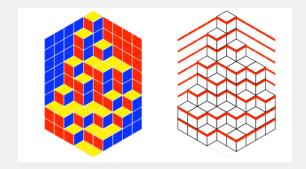
$$n_{\min} := \inf \{ n: F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^+) = F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^-) \}$$

- Output $Z := F_{\xi_0} \circ F_{\xi_{-1}} \circ \dots \circ F_{\xi_{-n_{\min}}}(\omega^{\pm}) \in \Omega$
- Claim: $Z \sim \pi$ (no bias!)
- Proof: with a picture
- Algorithmically better to replace -n by -2^n .

- View time as running from $-\infty$ to 0: $\xi = (\ldots, \xi_{-2}, \xi_{-1}, \xi_0)$.
- Find

$$n_{\min} := \inf \{ n: F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^+) = F_{\xi_0} \circ F_{\xi_{-1}} \circ \ldots \circ F_{\xi_{-n}}(\omega^-) \}$$

- Output $Z := F_{\xi_0} \circ F_{\xi_{-1}} \circ \dots \circ F_{\xi_{-n_{\min}}}(\omega^{\pm}) \in \Omega$
- Claim: $Z \sim \pi$ (no bias!)
- Proof: with a picture
- Algorithmically better to replace -n by -2^n .
- NB: "termination bias", because Z and n_{\min} not independent. See J. Fill '98 for unbiased interruptible perfect simulation algorithm



L non-intersecting paths
$$\varphi := (\varphi^i), i = 1, \dots, L, \varphi^i(x) - \varphi^i(x-1) = \pm 1, \varphi^i(0) = \varphi^i(L) = i$$

Partial order: $\varphi \leq \psi \Leftrightarrow \varphi^{i}(x) \leqslant \psi^{i}(x)$ for all i, x

Note: concides with the partial order induced by height function

"Tower-move" sampling algorithm:

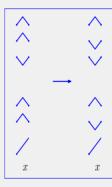
• Choose 0 < x < L uniformly at random

"Tower-move" sampling algorithm:

- Choose 0 < x < L uniformly at random
- resample $\varphi^i(x)$, i = 1, ..., L uniformly conditionally on $\varphi^i(x \pm 1)$, i = 1, ..., L.

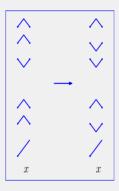
"Tower-move" sampling algorithm:

- Choose 0 < x < L uniformly at random
- resample $\varphi^i(x)$, i = 1, ..., L uniformly conditionally on $\varphi^i(x \pm 1)$, i = 1, ..., L.



"Tower-move" sampling algorithm:

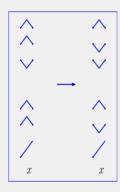
- Choose 0 < x < L uniformly at random
- resample $\varphi^i(x)$, i = 1, ..., L uniformly conditionally on $\varphi^i(x \pm 1)$, i = 1, ..., L.



• Easy to check: (1) uniform measure π is reversible (2) global monotone coupling

"Tower-move" sampling algorithm:

- Choose 0 < x < L uniformly at random
- resample $\varphi^i(x)$, i = 1, ..., L uniformly conditionally on $\varphi^i(x \pm 1)$, i = 1, ..., L.



- Easy to check: (1) uniform measure π is reversible (2) global monotone coupling
- Single step easy to simulate

Define function
$$\varphi \mapsto \Phi(\varphi) \in \mathbb{R}$$
 as $\Phi(\varphi) = \sum_{i=1}^{L} \sum_{x=0}^{L} \varphi^{i}(x) \sin\left(\frac{\pi x}{L}\right)$

Note:

• if $\varphi \leq \psi$ then $\Phi(\varphi) \leqslant \Phi(\psi)$, and $\Phi(\psi) - \Phi(\varphi) \geqslant \frac{1}{L}$ if $\varphi \neq \psi$.

Define function
$$\varphi \mapsto \Phi(\varphi) \in \mathbb{R}$$
 as $\Phi(\varphi) = \sum_{i=1}^{L} \sum_{x=0}^{L} \varphi^{i}(x) \sin\left(\frac{\pi x}{L}\right)$

Note:

- if $\varphi \leq \psi$ then $\Phi(\varphi) \leqslant \Phi(\psi)$, and $\Phi(\psi) \Phi(\varphi) \geqslant \frac{1}{L}$ if $\varphi \neq \psi$.
- Deduce $\mathbb{P}(\varphi^+(n) \neq \varphi^-(n)) \leq L \times \mathbb{E}(\Phi(\varphi^+(n)) \Phi(\varphi^-(n)))$

Define function
$$\varphi \mapsto \Phi(\varphi) \in \mathbb{R}$$
 as $\Phi(\varphi) = \sum_{i=1}^{L} \sum_{x=0}^{L} \varphi^{i}(x) \sin\left(\frac{\pi x}{L}\right)$

Note:

- if $\varphi \leq \psi$ then $\Phi(\varphi) \leqslant \Phi(\psi)$, and $\Phi(\psi) \Phi(\varphi) \geqslant \frac{1}{L}$ if $\varphi \neq \psi$.
- Deduce $\mathbb{P}(\varphi^+(n) \neq \varphi^-(n)) \leq L \times \mathbb{E}(\Phi(\varphi^+(n)) \Phi(\varphi^-(n)))$
- Will prove (next slide):

$$\mathbb{E}(\Phi(\varphi^{+}(n)) - \Phi(\varphi^{-}(n))) \leqslant \frac{1}{L^{2}} \quad \text{if} \quad n \approx L^{3} \log(L)$$

Define function
$$\varphi \mapsto \Phi(\varphi) \in \mathbb{R}$$
 as $\Phi(\varphi) = \sum_{i=1}^{L} \sum_{x=0}^{L} \varphi^{i}(x) \sin\left(\frac{\pi x}{L}\right)$

Note:

- if $\varphi \leq \psi$ then $\Phi(\varphi) \leqslant \Phi(\psi)$, and $\Phi(\psi) \Phi(\varphi) \geqslant \frac{1}{L}$ if $\varphi \neq \psi$.
- Deduce $\mathbb{P}(\varphi^+(n) \neq \varphi^-(n)) \leq L \times \mathbb{E}(\Phi(\varphi^+(n)) \Phi(\varphi^-(n)))$
- Will prove (next slide):

$$\mathbb{E}(\Phi(\varphi^{+}(n)) - \Phi(\varphi^{-}(n))) \leqslant \frac{1}{L^{2}} \quad \text{if} \quad n \approx L^{3} \log(L)$$

• Conclude: $T_{\text{mix}} \lesssim L^3 \log(L)$.

• Crucial observation: if at step n we choose site x, $\sum_{i=0}^{L} \varphi^{i}(x)$ changes on average by

$$\frac{1}{2}\sum_{i=1}^{L-1} (\Delta \varphi^i)(x), \quad \Delta = \text{discrete Laplacian}.$$

• Crucial observation: if at step n we choose site x, $\sum_{i=0}^{L} \varphi^{i}(x)$ changes on average by

$$\frac{1}{2}\sum_{i=1}^{L-1} (\Delta \varphi^i)(x), \quad \Delta = \text{discrete Laplacian}.$$

• Therefore, $\Phi(\varphi)$ changes on average by

$$\frac{1}{2L} \sum_{x=1}^{L-1} \sum_{i=1}^{L} (\Delta \varphi^i)(x) \sin\left(\frac{\pi x}{L}\right) = \frac{1}{2L} \sum_{x=1}^{L-1} \sum_{i=1}^{L} \varphi^i(x) \Delta\left(\sin\left(\frac{\pi x}{L}\right)\right)$$

• Crucial observation: if at step n we choose site x, $\sum_{i=0}^{L} \varphi^{i}(x)$ changes on average by

$$\frac{1}{2}\sum_{i=1}^{L-1} (\Delta \varphi^i)(x), \quad \Delta = \text{discrete Laplacian}.$$

• Therefore, $\Phi(\varphi)$ changes on average by

$$\frac{1}{2L} \sum_{x=1}^{L-1} \sum_{i=1}^{L} (\Delta \varphi^i)(x) \sin\left(\frac{\pi x}{L}\right) = \frac{1}{2L} \sum_{x=1}^{L-1} \sum_{i=1}^{L} \varphi^i(x) \Delta\left(\sin\left(\frac{\pi x}{L}\right)\right)$$

• Note: $\Delta(\sin(\frac{\pi x}{L})) = -\lambda_L \sin(\frac{\pi x}{L}), \quad \lambda_L \approx \frac{\pi^2}{L^2}$

• Crucial observation: if at step n we choose site x, $\sum_{i=0}^{L} \varphi^{i}(x)$ changes on average by

$$\frac{1}{2}\sum_{i=1}^{L-1} (\Delta \varphi^i)(x), \quad \Delta = \text{discrete Laplacian}.$$

• Therefore, $\Phi(\varphi)$ changes on average by

$$\frac{1}{2L} \sum_{x=1}^{L-1} \sum_{i=1}^{L} (\Delta \varphi^i)(x) \sin\left(\frac{\pi x}{L}\right) = \frac{1}{2L} \sum_{x=1}^{L-1} \sum_{i=1}^{L} \varphi^i(x) \Delta\left(\sin\left(\frac{\pi x}{L}\right)\right)$$

- Note: $\Delta(\sin(\frac{\pi x}{L})) = -\lambda_L \sin(\frac{\pi x}{L}), \quad \lambda_L \approx \frac{\pi^2}{L^2}$
- wrapping up: $\mathbb{E}(\Phi(\varphi(n))) \mathbb{E}(\Phi(\varphi(n-1))) = -\frac{\lambda_L}{2L}\mathbb{E}(\Phi(\varphi(n-1)))$

Conclusion:

• Iterating,

$$\mathbb{E}(\Phi(\varphi^{+}(n)) - \Phi(\varphi^{-}(n))) = \left(1 - \frac{\lambda_{L}}{2L}\right)^{n} \mathbb{E}(\Phi(\varphi^{+}(0)) - \Phi(\varphi^{-}(0)))$$

$$\approx e^{-n\lambda_{L}/(2L)} \mathbb{E}(\Phi(\varphi^{+}(0)) - \Phi(\varphi^{-}(0)))$$

$$\approx e^{-n\frac{\pi^{2}}{2L^{3}}} \mathbb{E}(\Phi(\varphi^{+}(0)) - \Phi(\varphi^{-}(0)))$$

$$\approx L^{3}e^{-n\frac{\pi^{2}}{2L^{3}}}$$

$$\leq \frac{1}{L^{2}} \quad \text{if } n \gtrsim L^{3} \log(L).$$

• Argument (almost immediately) implies also $\gamma = \frac{\lambda_L}{L}$ exactly!

Exercises: session I

Exercise 14. Prove the following: any random walk on a (finite) tree *T* is a reversible Markov chain. Find the stationary measure in terms of the transition matrix *P*.

Exercise 15. Prove that $\operatorname{Var}_{\pi}(P^n f) \leq \operatorname{Var}_{\pi}(f) (1-\gamma)^{2n}$ and that γ is the largest constant such that this holds for every function f.

Exercise 16. Let $q \in \mathbb{N}$, G = (V, E) a graph of maximal degree Δ . Define a reversible MC on the set of perfect q-colorings of G such that it is irreducible for q large (for instance, $q > 2\Delta$).

Exercise 17. Prove that the elementary-rotation dynamics on a finite, planar, bipartite graph *G* is irreducible.

Exercise 18. Let *X* be a RW on \mathbb{N}^2 with transition probabilities P((x,y),(x+1,y)) = P((x,y+1),(x,y)) = p, P((x,y),(x-1,y)) = P((x,y-1),(x,y)) = (1-p)/2 assuming that the endpoint is in \mathbb{N}^2 , otherwise *X* stays put. Compute the stationary measure π .

Exercises: session II

Exercise 19. Prove that the elementary-rotation dynamics on a finite, planar, bipartite graph *G* is irreducible.

Exercise 20. Deduce that there exists a configuration with maximal height

Exercise 21. Prove $T_{\text{rel}} = N$, $T_{\text{rel}} = O(1)$ for biased RW on $\{1, ..., N\}$ (jump probabilities $p \neq q$) using path coupling with exponential metric

Exercise 22. Prove that the Ising Glauber dynamic on G = (V, E) has $T_{\text{mix}} \lesssim |V| \log(|V|)$ and $\gamma \gtrsim |V|^{-1}$ for β sufficiently small (depending on the maximal degree of G)

Exercise 23. Prove that the symmetric corner-flip dynamic admits a global monotone coupling

Exercise 24. Prove that the dimer dynamic on a planar, bipartite finite graph admits a global Markovian monotone coupling.