
DISCRETE RANDOM STRUCTURES: RANDOM DOMINO

TILINGS (PRELIMINIARY VERSION)

SUNIL CHHITA

1. Lecture 1

1.1. Motivation. Random tiling models serve as toy models for two dimensional
statistical mechanical models. One of their attractions is that they are exactly
solvable, meaning that the partition function can be computed explicitly. More-
over, exact formulas can be found for correlations which means that very precise
asymptotics can be computed leading to a deep understanding of what happens
to tilings of large regions. Much of the probabilistic behavior observed in these
tiling models is expected to appear in much more complicated models that are
still exactly solvable, such as the six vertex model, as well as those that are not
exactly solvable.

These lectures will concentrate on random domino tilings since they are, by
in large, well understood, while still being an active area of research. There are
other random tiling models, such as lozenge tilings which share many of the
probabilistic features, albeit with a different inherent algebraic structure.

One of the main attractions for researchers to this field has been striking
pictures of random tilings of large regions. These simulations have drawn and
inspired people from a variety of areas including algebraic combinatorics, prob-
ability as well as mathematical physics. Much of the success of the field has
been motivated by trying to study these pictures as well as the fact that random
tilings are tractable using a wide range of techniques. An example of a random
domino tiling can be found in Figure 1, which will be the basis of these notes.

These lectures will only focus on a very limited portion of the theory since it
is vast. To this end, we have chosen to restrict to domino tilings of the Aztec
diamond, predominantly focussing on uniformly random tilings. Note that we
will not address any results on lozenge tilings here, see the excellent book by
Gorin [Gor21]. The first lecture will focus on setting up preliniaries, as well
as simulating random tilings and Kasteleyn’s theorem. The second lecture will
introduce determinantal point processes and give methods to find formulas for
the correlations of dominoes. The third lecture will briefly highlight some of
the general theory, such as the flucutations around the limit shape, and give
an example of the saddle point analysis method. We mention that a lot of the
preliminaries for these models will follow the setup given in [Joh18].

1.2. Some Preliminaries. Let G = (V,E) be a finite planar bipartite graph
that has no cut points. To each edge, e, associate a weight which is a positive
real number, that is ν : E 7→ R+ is the weight function. A dimer covering of G is
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Figure 1. A uniformly random domino tiling of an Aztec dia-
mond of size 100

a collection of edges so that each vertex is incident to one edge. The weight of a
dimer covering M is defined as

(1) ν(M) =
∏
e∈M

ν(e)

where e ∈M if the edge e is in the dimer covering M .
The dimer model is the probability measure which picks M with probability

proportional to w(M). That is, it is the probability measure P with

(2) P[M ] =
ν(M)

Z

where Z =
∑

M∈Mw(M) and M is the set of all dimer coverings of G. The
quantity Z is known as the partition function and P, the dimer model measure is
an example of a Boltzmann measure.

1.3. Height function. Since we have chosen G to be bipartite, we can define
a height function on the faces of the graph G. We assume that the graph G is
regular, that is the degree of all the vertices are the same. Recall that a bipartite
graph means that we can partition the set of vertices into two types. The usual
convention for distinguishing between these two types is to assign colors white
and black and refer to one type as the white vertices and the other type as the
black vertices.

The height function is defined through height differences. The height change on
the faces around each white vertex increases by 1 counter clockwise, provided that
the incident edge is not covered by a dimer and decreases deg(v)− 1 if a dimer is
crossed, where deg(v) denotes the degree of a vertex. For black vertices, it is the
same except we interchange counter clockwise with clockwise. An example of a
dimer covering with its height function can be found in Figure 2.

We will record some facts that we will not prove. Given a height function on
a graph, we can recover the dimer covering by looking for height differences
of | deg(v) − 1| between adjacent faces. Moreover, dimer coverings and height
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Figure 2. An example of a height function, the heights are on
the boundary of the region are given.

functions are in one to one correspondence provided an initial height level is
set. Finally, a result usually attributed to Thurston [Thu90] is that a region is
tileable provided it admits a valid height function. Here, tileable means that
a dimer covering can be found and a valid height function is one that has the
height difference rules given above.

1.4. Dual Graph. The dual of a dimer covering gives a tiling. There are two
prototypical examples of this: if the underlying graph for the dimer model is
(a subgraph of) the honeycomb graph, then the tiling model is a lozenge tiling,
whereas if the underlying graph for the dimer model (a subgraph of) Z2, then
the tiling model is a domino tiling. These lectures solely focus on domino tilings.
We will interchange between dominoes and dimers without mention.

1.5. Gauge Transformations and Face weights. The dimer model is param-
eterized by its face weights which are the alternating product of the edge weights
around each face. Thus, two dimer models with the same face weights will have
the same measure, and are said to be gauge equivalent.

If we change the weight function ν by multiplying the edge weights incident
to a single vertex v by a constant λ, then we change the partition function by a
constant λ, but the dimer model measure does not change since exactly one edge
is used in each dimer configuration. Such a procedure of multiplying the edge
weights around a single vertex is called a gauge transformation.

1.6. Two boundary conditions. Random tiling models are extremely sensitive
to boundary conditions as will be seen later. This was picked up by Kasteleyn in
one of the first papers on the dimer model. The two boundary conditions that
we will focus on are

■ A (2n+ 1)× (2m+ 1) region with a corner vertex removed, that is the
region ([0, 2n+ 1]× [0, 2m+ 1] ∩ Z2)\{(0, 0)}.

♦ An Aztec diamond, introduced in [EKLP92], which we will use the con-
vention that we have rotated by π/4. An Aztec diamond of size n has
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white vertices, WAz
n , given by

{(x1, x2) ∈ Z2 : x1 mod 2 = 1 and x2 mod 2 = 0, 1 ≤ x1 ≤ 2n−1, 0 ≤ x2 ≤ 2n}

and black vertices, BAz
n , given by

{(x1, x2) ∈ Z2 : x1 mod 2 = 0 and x2 mod 2 = 1, 0 ≤ x1 ≤ 2n, 1 ≤ x2 ≤ 2n−1}
We could generalize the first region to more complicated boundaries, such as
those known as Temperleyan regions [KPW00, Rus18, BL23], but we will not do
so here. We refer to the boundary conditions as ■ and ♦.

1.7. Sampling. We give ways to sample dimer coverings of both boundary
conditions that are described above. These algorithms are examples of perfect
simulations. The first approach can be generalized to the Temperleyan regions,
whilst the approach for the Aztec diamond is harder to generalize.

1.7.1. Sampling for the boundary condition ■. Recall that a tree is a graph
that contains no cycles and a spanning tree is a tree which includes all vertices.
Temperley’s bijection [Tem74] gives a correspondence between dimer coverings on
a (2m+ 1)× (2n+ 1) grid with a corner vertex removed with a pair of directed
spanning trees, which we first describe.

Suppose that the white vertices of Λ = ([0, 2n+ 1]× [0, 2m+ 1] ∩ Z2)\{(0, 0)}
are given by (x1, x2) such that x1 + x2 mod 2 = 0. We can split these white
vertices into two types, those with x1 mod 2 = 0 and those with x2 mod 2 = 1.
Label these sets of white vertices W0 and W1 respectively.

Prescribe that all the edges incident to vertices in W1 have weight 1. Then the
weight of any matching is given by the dimers incident to vertices in W0. For each
dimer (w,w± (0, 1)) or (w,w± (1, 0)) with w ∈ Wi and i ∈ {0, 1}, draw a directed
arrow from w to w ± (0, 2) or w ± (2, 0) respectively. Doing this procedure gives
a pair of directed spanning trees. The primal tree, with vertex set given by W0,
is rooted at (0, 0) while the dual tree, with vertex set given by W1, has wired
boundary conditions. This procedure is known as Temperley’s bijection, since
there is a one to one correpondence between trees and dimer configurations.

Wilson’s algorithm is a powerful method for generating uniformly random
spanning tree. To generate a random spanning tree rooted at the origin, proceed
as follows:

• Consider a random walk with weights given by the edge weights around
the W0 vertices.

• Initially, the tree is empty. Pick a vertex uniformly at random.
• Run the random walk until it hits the root and chronologically erase the
loops. This gives a loop-erased random walk. Add this to the tree.

• Pick another vertex uniformly at random not on the tree and perform
the above step until all vertices are included in the tree.

The above procedure, known as Wilson’s algorithm, generates a random
spanning tree, which we will not prove.

The consequence of this means that we can first generate a spanning tree on
the W0 vertices using Wilson’s algorithm, which gives the dimers incident to all
vertices in W0 by Temperley’s bijection. The remaining dimers are those incident
to all vertices in W1, which are determined by the dual tree which is already
determined.
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Figure 3. The square move and its effect on the edge weights.
The left figure shows are square with edge weights a, b, c and d
while the right figure shows an application of the square move to
that single face. Here, we have A = c/∆, B = d/∆, C = a/∆,
and D = b/∆ where ∆ = (ac+ bd).

1.7.2. Sampling for the boundary condition ♦. To introduce the domino shuffle
which gives a powerful method for simulating domino tilings of Aztec diamonds,
we require two graphical moves.

(1) (Square Move)1 Suppose the edge weights around a square with vertices
(0, 1), (1, 0), (0,−1) and, (−1, 0) are given by a, b, c, and d where the
labelling is done clockwise around the face starting with the NE edge. We
can replace the square by a smaller square with edge weights A,B,C, and
D (with the same labelling convention) and add an edge, with edge-weight
equal to 1, between each vertex of the smaller square and its original
vertex. Then, set A = c/∆, B = d/∆, C = a/∆, and D = b/∆ where
∆ = (ac+ bd). This transformation is called the square move; see Fig. 3.

(2) (Edge contraction) For any two-valent vertex in the graph with incident
edges having weight 1, contract the two incident edges. This is called
edge contraction.

To describe the domino shuffle [Pro03], we consider an Aztec diamond of size
n. We apply the square move on all faces of the Aztec diamond which have
coordinates (2i + 1, 2j + 1) 0 ≤ i, j ≤ n − 1. We contract all the two valent
vertices and remove all pendant edges, that is those vertices which are incident
to a single vertex (since these vertices must be incident to a dimer). This gives
an Aztec diamond of size n− 1 but with modified edge weights. We record these
edge weights and repeat the procedure on the resulting Aztec diamond and its
modified edge weights. Repeat until we reach an Aztec diamond of size 1.

To simulate, we simply run the procedure in reverse and assign two by two
dimers on the empty squares with probabilities that were recorded above. That is,
for the initial step of a size 1 Aztec diamond, we choose two dimers ((1, 0), (0, 1))
and ((1, 2), (2, 1)) with probability given by the weighted Aztec diamond of size 1
found by iteratively applying the square move and edge contraction.

We finish this subsection by leaving a remark that we can consider 0 weights,
which would corresponding to freezing off certain dimers. This is achieved by
setting the 0 weights to ϵ and performing a series expansion when computing the
edge weights by the square move; see Figure 5. This extension gives a robust way

1Usually attributed to Greg Kuperberg
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Figure 4. An example of the graph transformation after applying
the square move on all even faces of an Aztec diamond of size 4.
The left figure shows where the square move applied. The figure
on the right shows the actual graph. Applying edge contraction
to the two-valent vertices and removing pendant edges gives an
Aztec diamond of size 3.

Figure 5. A simulation of a double Aztec diamond which gives
two limit shapes that touch.

to simulate a larger class of tilings using the domino shuffle, such as embedding
lozenge tilings of certain regions within an Aztec diamond.

1.8. Kasteleyn’s Theorem. Kasteleyn’s method gives a method to enumerate
the number of tilings as well as compute probabilities of local events.

Let G be as above. Let W and B be the set of white and black vertices respectively.
If W = {w1, . . . , wn} and B = {b1, . . . , bn}, then since each edge is incident to both
white and black vertices, we can write each dimer configuration as

(3) C(σ) = {(bi, wσ(i)) : 1 ≤ i ≤ n}

for σ ∈ Sn where Sn denotes the symmetric group with n symbols. We use the
convention that if σ does not correspond to a matching, then C(σ) = ∅ and
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ν((bi, wσ(i))) = 0 for some i. Then we immediately get that

(4) Z =
∑
σ∈Sn

n∏
i=1

ν((bi, wσ(i)))

which means that Z is a permanent. To get a determinant, Kasteleyn’s observation
was to introducing a sign so that the above expansion is equal to a determinant.
A Kasteleyn sign is a function s : E → T such that for any face in G with edges
e1, . . . , e2k in cyclic order, we have

(5)
s(e1) . . . s(e2k−1)

s(e2) . . . s(e2k)
= (−1)k+1

and if (bw) is not an edge, then set s((bw)) = 1 by convention. A convenient
example for the square grid is to have the vertical edges e have s(e) = i =

√
−1.

We define the operator K : B → W by

(6) K(b, w) = s((b, w))ν((b, w)).

Given the enumeration of vertices given above, we get the Kasteleyn(-Percus)
matrix

(7) K = (K(bi, wj))1≤i,j≤n.

Then, we get the following theorem, due to Kasteleyn [Kas61, Kas63] as well
as Temperley and Fisher [TF61].

Theorem 1.1. There is a complex number S with |S| = 1, independent of the
choice of edge weights such that detK = SZ.

Proof of Theorem 1.1. By expanding out the determinant, we get
(8)

detK =
∑
σ∈Sn

sgn(σ)

n∏
i=1

K(bi, wσ(i)) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

s(bi, wσ(i))ν((bi, wσ(i))).

Write S(σ) = sgn(σ)
∏n
i=1 s((bi, wσ(i)))ν((bi, wσ(i))). If we can show that S(σ1) =

S(σ2) for all σ1, σ2 such that C(σ1), C(σ2) ̸= 0, then we are done since this would
give S = S(σ) and shows that the right side above is a count with a multiplicative
factor of S.

Consider two dimer coverings corresponding to σ1 and σ2. If we overlap these
configurations then each vertex is incident to two dimers. This means that the
overlapped configuration will consist of loops and double edges where as we
traverse around a loop, we alternate between σ1 and σ2 dimers and hence the
loops have even length. This means that along each loop, we can rotate the
dimers on σ1 so that they overlap with dimers on σ2, forming double edges.

It is enough to check when C(σ1) and C(σ2) differ by a single loop of length
2k and proceed inductively on the remaining loops. In this case, we have that
σ1 = σ2τ where τ is a permutation equal to the identity except for the k cycle.
Let e2, e4, . . . , e2k be edges covered by dimers in C(σ1) around the loop and let
e1, e3, . . . , e2k−1 be edges covered by dimers in C(σ2) around the loop. Then we
have that

(9)
S(σ2)

S(σ1)
=

sgn(σ2)

sgn(σ1)

n∏
i=1

s(biwσ2(i))

s(biwσ1(i))
= sgn(τ)

s(e1) . . . s(e2k−1)

s(e2) . . . s(e2k)
= (−1)ℓ
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Figure 6. An example of a two-periodic Aztec diamond of size 4.
Edges incident to faces labelled a have edge weight a while edges
incident to faces labelled b have edge weight b. The weights are
doubly periodic.

since sgn(τ) = (−1)k and using Exercise 8 below.
□

One of Kasteleyn’s original motivations for enumerating the number of domino
tilings was its implications for computing the partition function of the two-
dimensional Ising model, since there is a mapping between Ising spin boundaries
and the dimer model on certain non bipartite graphs through the Fisher corre-
spondence. Since Kasteleyn’s theorem can be extended to non bipartite graphs,
the partition function for the Ising model can be computed using dimer model
techniques; see [Kas63] for more details.

1.9. Lecture 1 Exercises.

Exercise 1. Count the number of domino tilings of an 8 by 8 checkerboard with
two black squares on opposite corners removed.

Exercise 2. Give the height function for a dimer covering of an Aztec diamond
of size 4 (your choice of tiling) as well as the height function for the boundary
faces.

Exercise 3. Give the height function for a dimer covering of a 5 by 5 portion
of the square grid with the bottom left corner removed, including the height
function for the boundary faces.

Exercise 4. Find the number of dimer coverings of an Aztec diamond of size

n by first showing that Zn = 2n
2
Z̃n−1 where Zn is the number of tilings of an

Aztec diamond of size n and Zn−1 is the number of tilings of an Aztec diamond
of size n− 1, but with all the edge weights equal to 1/2.

Exercise 5. Compute the partition function of the two-periodic Aztec diamond
of size 4m. The weights are given in Figure 6

Exercise 6. (Coding exercise) Implement the domino shuffle for the Aztec
diamond as well as the sampling for the square grid for all edges having weight 1.
Generalize this to arbitrary weights.
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Exercise 7. (Coding exercise) Sample a dimer covering on a (2n+1)× (2m+1)
grid with the bottom left corner removed with all edge weights equal to 1.

Exercise 8. Consider a planar bipartite graph G with no cut points. If a cycle
e1, . . . , e2k of length 2k encloses ℓ points in the graph and s(e) is a Kasteleyn
sign on G, then show that

(10)
s(e1) . . . s(e2k−1)

s(e2) . . . s(e2k)
= (−1)k+ℓ+1.

Exercise 9. For an arbitrary choice of faceweights for a square and its neigh-
bouring faces, compute the faceweights after applying the square move.

Exercise 10. Generalize Temperley’s bijection in its current setup to the honey-
comb graph. What are the allowed boundary conditions?

2. Lecture 2

2.1. Determinantal Point Processes. Let X be a complete separable metric
space (e.g. Rd or Zd) and let N(X ) be the space of all boundedly finite counting
measures ξ on X . Let λ be a refernce measure on X (i.e. Lebesgue measure for
X = Rd). We say that ξ is simple if and only if ξ({x}) ≤ 1.

A point process X is a probability measure P on N(X ). We have ξ is a simple
point process if and only if P(ξ is simple) = 1. For any B bounded we have that

the restriction of ξ to B can be written as
∑ξ(B)

i=1 δxi and we think of xi ∈ X as
particles. These particles have no ordering and so the resulting point process can
be thought of as a particle process.

Suppose that ϕ ∈ L∞(X , λ) and has bounded support B. It is usual to write
that

(11)
∏
i

(1 + ϕ(xi)) =

ξ(B)∏
i=1

(1 + ϕ(xi))

Then, we define the nth correlation function ρn through

(12) E[
∏
i

(1− ϕ(xi))] =

∞∑
n=0

(−1)n

n!

∫
Xn

n∏
j=1

ϕ(xj)ρn(x1, . . . , xn)d
nλ(x),

where the n = 0 term on the sum on right side above is equal to 1 provided that

(13)

∞∑
n=0

∥ϕ∥n∞
n!

∫
Xn

ρn(x1, . . . , xn)d
nλ(x) <∞.

The interpretation of the correlation function is as follows

• If X is discrete, then ρn(x1, . . . , xn) is the probability of seeing particles
at x1, . . . , xn.

• If X is continuous, then ρn(x1, . . . , xn) is the density of particles at
x1, . . . , xn.

A determinantal point process is defined as

(14) ρn(x1, . . . , xn) = detK(xi, xj)1≤i,j≤n
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and K is a correlation kernel. With the above equation, (12) becomes

(15) E[
∏
i

(1− ϕ(xi))] =
∞∑
n=0

(−1)n

n!

∫
Xn

n∏
j=1

ϕ(xj) det(K(xi, xj))1≤i,j≤nd
nλ(x).

The correlation kernel K can be viewed as an integral kernel of an operator K
on L2(X , λ), that is

(16) (Kf)(x) =

∫
X
K(x, y)f(y)dλ(y)

provided that the operator is well-defined. Suppose that ϕ ∈ L∞(X , λ) has
bounded support B. Then, (15) becomes

(17) E[
∏
i

(1− ϕ(xi))] =
∞∑
n=0

(−1)n

n!

∫
Bn

n∏
j=1

ϕ(xj) det(K(xi, xj))1≤i,j≤nd
nλ(x)

provided that

(18)
∞∑
n=0

∥ϕ∥n∞
n!

∣∣∣∣∣
∫
Bn

det(K(xi, xj))1≤i,j≤nd
nλ(x)

∣∣∣∣∣ <∞.

The expansion in (17) is the definition of the Fredholm determinant det(I +
IBKIBϕ)L2(X ) = det(I+Kϕ)L2(B), where Kϕ is an integral operator on L2(B)
with kernel K(x, y)ϕ(y). Although there are other definitions which are equivalent
provided that the operator is trace class, this is the most covenient one for these
lectures. Appropriate choices of ϕ will give useful statistics for determinantal
point process, with examples including gap probabilities, height functions, etc.

Determinantal point processes were first identified by Macchi [Mac75] and have
a long history in random matrix theory. They have played an important and
significant role in models in integrable probability, such as random tiling models,
last passage percolation, TASEP and uniform spanning tree; for example see
[Joh06, Bor10, Sos00] for further details as well as details on constructions and
properties. The term determinantal was coined by Borodin in [BO00] and has
since become standard.

2.2. Inverse Kasteleyn Matrix. The following theorem is due to Kenyon
[Ken97] as well as Montroll-Potts-Ward [MPW63].

Theorem 2.1. Let e1 = (b1, w1), . . . , er = (br, wr). Then, the probability
e1, . . . , er are observed in a dimer covering is given by

(19) P[e1, . . . , er] =
r∏
i=1

K(bi, wi) det(K
−1(wi, bj))1≤i,j≤r.

That is, the dimers form a determinantal point process on the edges with correlation
kernel given by L(ei, ej) = K(bi, wi)K

−1(wi, bj).

Proof. For a dimer cover M , let

(20) IM (e) =

{
1 if e ∈M
0 if e ̸∈M.
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Then, we have that Z =
∑

M∈M
∏
e∈M ν(e)IM (e). We proceed by differentiating

the partition functon in this form. Indeed, we have that

P[e1, . . . , er] =
1

Z

∑
M∈M

r∏
i=1

IM (ei)
∏
e∈M

ν(e)

=
1

Z

∑
M∈M

r∏
i=1

IM (ei)ν(ei)
∏
e∈M

e̸=ei∀1≤i≤r

ν(e)

=
1

Z

r∏
i=1

ν(ei)
∂rZ

∂v(e1) . . . ∂v(er)

=
1

detK

r∏
i=1

ν(ei)
∂r detK

∂v(e1) . . . ∂v(er)

(21)

where in the last line we have used Theorem 1.1 and the fact that the signs
cancel.

Let I = {ik}rk=1, J = {jk}rk=1 and ei = (bik , wik). Let I∁ = {1, . . . , n}\I and

J∁ be defined similar. Note that K(bik , wjk) = s((bik , wjk))ν((bik , wjk)). Using
Laplace’s expansion we get that

(22)
∂r detK

∂v(e1) . . . ∂v(er)
= (−1)

∑
i∈I i+

∑
j∈J j detK(I∁, J∁)

r∏
i=1

s(ei)

Subsituting back into (21) and noting that by the formula for inverting matrices
we have

(23) (−1)
∑

i∈I i+
∑

j∈J
detK(I∁, J∁)

detK
= detK−1(J, I).

The result follows.
□

In what follows below, we give a couple of methods for computing the inverse of
the Kasteleyn matrix for the Aztec diamonds, the second of which is systematic.

2.3. Computing the inverse Kasteleyn matrix for the Aztec diamond.
Here we give a combinatorial method for computing the inverse Kasteleyn matrix
for an Aztec diamond of size n. Let e1 = (1, 1) and e2 = (−1, 1). We will consider
the Kasteleyn matrix

(24) KAz
n (x, y) =

 1 if x = y ± e1
i if x = y ± e2
0 otherwise

where x ∈ BAz
n , y ∈ WAz

n and i =
√
−1.

We can apply (KAz
n ) to (KAz

n )−1 entrywise which leads to a linear equation
expressing (KAz

n )−1(x, y) in terms of its neighbouring vertices since (KAz
n ) is a

sparse matrix. More preciesely, we have that for x, y ∈ BAz, we have

((KAz
n ).(KAz

n )−1)(x, y) = (KAz
n )−1(x+ e1, y)δx1<2n + (KAz

n )−1(x− e1, y)δx1>0

+ i(KAz
n )−1(x+ e2, y)δx1>0 + i(KAz

n )−1(x− e2, y)δx2<2n = δx=y.

(25)
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A similar equation can be found by postmultplying (KAz
n )−1 by (KAz

n ). Both of
these equations can be solved using generating functions which gives a generating
function formula for (KAz

n )−1 which is dependent on the boundary of the Aztec
diamond, that is a function of (KAz

n )−1(x, y) where x is either of the form
(2i + 1, 0) or (2i + 1, 2n) and y is either of the form (0, 2j + 1) or (2n, 2j + 1)
for 0 ≤ i, j ≤ n− 1. This approach works for more general weightings as well as
general graphs, which means that once (KAz

n )−1 is established for its boundary
values, the interior values will follow from a linear recurrences.

2.3.1. Boundary recurrence. If w and b are on the same face (including the
boundary face), then |K−1(w, b)| = Z({w, b})/Z where Z({w, b}) is the partition
function obtained from moving w and b from the graph, which follows from
Cramers Rule. The overall sign of K−1(w, b) can easily be computed. Below
we give a recusion for computing a ratio of partition functions of the Aztec
diamond with the top partition function having a pair of vertices removed from
the boundary.

Let Zn(i, j) denote |K−1
Az ((2i+ 1, 0), (0, 2j + 1)) det(KAz

n )| and Zn = det(KAz
n )

where (KAz
n ) is the Kastelyn matrix for the Aztec diamond defined in(24). Then

we have the following lemma

Lemma 2.2. For 0 ≤ i, j ≤ n− 1, we have

(26)
Zn(i, j)

Zn
=

1

2

∑
k,l∈{0,1}

(i−k,j−l)̸=(−1,−1)

Zn−1(i− k, j − l)

Zn−1
+

1

2
δ(i,j)=(0,0),n≥1

Proof. Notice that Zn(i, j) is equivalent to adding a pendent edge to (2i+ 1, 0)
and another pendent edges (0, 2j + 1). With this in mind, we apply the square
move given in the first lecture which gives an Aztec diamond of size n− 1, with
all diagonal edges having weight equal to 1

2 and all the remaining vertical and
horizontal edges having weight 1. Some care needs to be applied when removing
the pendant edges - we can remove the pendent vertices along with their incident
edges for the vertices

• (2k + 1, 0) for 0 ≤ k ≤ n− 1 but k ̸= i,
• (0, 2l + 1) for 0 ≤ l ≤ n− 1 but l ̸= j,
• (2k + 1, 2n) for 0 ≤ k ≤ n− 1 and (2n, 2l + 1) for 0 ≤ l ≤ n− 1.

We apply edge contraction at the two valent vertices that are incident to two
horizontal or two vertical edges; see Figure 7. We get that
(27)

Zn(i, j) =
∑

k∈{i−1,i}l∈{j−1,j}

1

4
Z̃n−1(k, l)2

n2
δ0≤k≤n−2δ0≤l≤n−2+

1

2
δ(i,j)=(0,0)Z̃n−12

n2

where Z̃n−1(k, l) is denotes the partition function of the Aztec diamond of size
n− 1 with all edges having weight 1/2 and removing (2k + 1, 0) and (0, 2l + 1)
from the graph. The above equation follows by carefully considering the possible
matchings from the previous added pendent edges and noting that when (i, j) = 0
and (k, l) = (−1,−1), then the resulting configuration is simply an Aztec diamond
of size n− 1 with edge weight 1/2 and the additional factor of 1/2 comes from
the forcing of the bottom leftmost diagonal edge.
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Figure 7. The effect of applying the shuffle on Aztec diamond of
size 4 with an additional pendant edge. The bottom black vertex
has two choices of dimers and so does the leftmost white vertex
which leads to a sum.

We divide the above equation by Zn use Exercise 4 to get

(28)
Zn(i, j)

Zn
=

∑
k∈{i−1,i}l∈{j−1,j}

1

4

Z̃n−1(k, l)

Z̃n−1

2n
2
δ0≤k≤n−2δ0≤l≤n−2 +

1

2
δ(i,j)=(0,0)

The last step is to apply a gauge transformation that multiplies all the white
vertices by 2 for the both the numerator and denominator of the first term in the
right side of the above equation. The result then follows after resumming. □

The above method for computing the inverse Kasteleyn matrix was introduced
in [CY14] with a goal of studying the two-periodic Aztec diamond, whose inverse
was also computed in that paper. Since this paper, there have been more
systematic ways to compute the correlation kernels for doubly periodic weights
of which the two-periodic Aztec diamond is one of. Only one of these methods,
using the matrix valued orthogonal polynomials has been generalized to doubly
periodically weighted lozenge tilings [Kui24].

2.4. Non-intersecting lattice paths. Associated to each tiling of an Aztec
diamond, there is a non-intersecting path description, sometimes known as the
DR paths.

The vertex set for the non-intersecting lattice paths is given by {(2j, 2k) :
0 ≤ j ≤ n, 0 ≤ k ≤ n}\{(0, 0)} and at each vertex v, there are directed edges
(v, v + (2, 0)), (v, v + (2,−2)) and (v, v + (0,−2)). The correspondence between
dimers and paths is given by

• if a dimer covers the edge ((2i, 2j+1), (2i+1, 2j)), then there is a directed
edge ((2i, 2j + 2), (2i+ 2, 2j)),

• if a dimer covers the edge ((2i, 2j + 1), (2i+ 1, 2j + 2)), then there is a
directed edge ((2i, 2j + 2), (2i+ 2, 2j + 2)),

• if a dimer covers the edge ((2i+ 1, 2j), (2i+ 2, 2j + 1)), then there is a
directed edge ((2i+ 2, 2j + 2), (2i+ 2, 2j))
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Figure 8. The correspondence between an Aztec diamond and
DR-paths.

for 0 ≤ i, j ≤ n− 1. Note that there is no path if there is a dimer of the form
((2i+ 2, 2j + 1), (2i+ 1, 2j + 2)) for 0 ≤ i, j ≤ n− 1. Figure 8 shows an example.

2.5. LGV Theorem. Let G = (V,E) be a directed, acyclic graph with no
mulitple edges. Let Π(u, v) be all directed paths π from u to v. Let Π(u, v) be
all directed paths (π1, . . . , πn) from u = (u1, . . . , un) to v = (v1, . . . , vn). We
say that two paths intersect if they share a common vertex, otherwise they are
non-intersecting. Let w : E → C be the weight function and set

w(π) =
∏
e∈π

w(e)

and

w(π1, . . . , πn) =
n∏
i=1

w(πi).

Let F be a family of paths and write

(29) W (F) =
∑

(π1,...,πn)∈F

w(π1, . . . , πn)

Let

p(u, v) =W (Π(u, v)) =
∑

π∈Π(u,v)

w(π)

which is the trnasition weight from u to v. We say that a path is G-compatible
if α < α′ and β > β′, if every path uα → vβ intersect every path uα′ to vβ′ .
The LGV theorem states that for every G-compatible paths, W (Πn.i.(u, v) =
det p(ui, vj)1≤i,j≤n, where Πn.i. are the paths that are non-intersecting. The
matrix inside the determinant is often called the LGV Matrix.

2.6. Relationship between Kasteleyn matrix and LGV Theorem. We
assign a specific ordering to the white and black vertices, which are given by the
functions wAz

n : [n(n+ 1)] → WAz
n and bAz

n : [n(n+ 1)] → BAz
n where

(30) wAz
n (i) =

{
(2i− 1, 0) if 1 ≤ i ≤ n
(2[i− 1]n + 1, 2n+ 2− 2⌊ i−1

n ⌋) otherwise
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and

(31) bAz
n (i) =

{
(0, 2i− 1) if 1 ≤ i ≤ n
(2[i− 1]n + 2, 2n+ 1− 2⌊ i−1

n ⌋) otherwise

for 1 ≤ i ≤ n(n+ 1), where [i]n = i mod n.
Let WAz

n = (wij)1≤i,j≤n with wij equal to the number of DR paths from (0, 2i)
to (2j, 0) for 1 ≤ i, j ≤ n which is enumerated by the LGV theorem. Due to the
one-to-one correspondence with dimer coverings, detWAz

n is also equal to the
number of dimer coverings on the Aztec diamond.

For a matrix M , denote M [i; j, k; l] to be the submatrix of M restricted to
rows i through to j and columns k through to l.

Lemma 2.3. Let An = (KAz
n )[1;n, 1;n], Bn = (KAz

n )[1;n, n+ 1;n(n+ 1)],Cn =
(KAz

n )[n+ 1;n(n+ 1), 1;n] and Dn = (KAz
n )[n+ 1;n(n+ 1), n+ 1;n(n+ 1)]. For

1 ≤ i, j ≤ n, let

w̃ij = (An −BnD
−1
n Cn)(i, j)

and W̃Az
n = (w̃ij)1≤i,j≤n. Then we have wij = |w̃ij |.

Proof. We have that

(32) detKAz
n = det(A−BD−1C) detD

provided that D is invertible. It is immediate that D has only one tiling. The
remainder of the proof involves showing the following claim whose proof is an
exercise.

Claim 1. The matrix (A− BD−1C)ij is exactly equal (up to sign), the (i, j)th

entry of the LGV matrix.

□

2.7. Computing the Correlation Kernel.

2.7.1. Setup using the LGV Theorem. The first step is to extend the graph for
the non-intersecting lattice paths. The new vertex set is given by {(j, k) : 0 ≤
j ≤ 2n, 0 ≤ k ≤ n}\{(0, 0)}. At each vertex v of the form (2j, k), there are
directed edges (v, v + (1, 0)), (v, v + (1,−1)) and (v, v + (0,−r)) for 0 ≤ j, k ≤ n
and r ≥ 0 while at each vertex v of the form (2j + 1, k), there is a directed edge
(v, v + (1, 0)) for 0 ≤ j, k ≤ n. The relationship with dimers is given as follows:

• if a dimer covers the edge ((2i, 2j+1), (2i+1, 2j)), then there is a directed
edge ((2i, j+1), (2i+1, j)) and another directed edge ((2i+1, j), (2i+2, j)),

• if a dimer covers the edge ((2i, 2j + 1), (2i + 1, 2j + 2)), then there is
a directed edge ((2i, j + 1), (2i + 1, j + 1)) and another directed edge
((2i+ 1, j + 1), (2i+ 2, j + 1)),

• if a dimer covers the edge ((2i+ 1, 2j), (2i+ 2, 2j + 1)), then there is a
directed edge ((2i+ 2, j + 1), (2i+ 2, j))

for 0 ≤ i, j ≤ n− 1. As before, there is no path if there is a dimer of the form
((2i+2, 2j+1), (2i+1, 2j+2)) for 0 ≤ i, j ≤ n− 1. By construction, the particle
starting at (0, n− i) will end at (2n,−i) for 1 ≤ i ≤ n.

To make the analysis simpler, we assert that the edges ((2i, j), (2i+ 1, j − 1))
and ((2i, j+1), (2i, j)) have weight a−1 and a respectively, where a ∈ (0, 1). This
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is gauge equivalent to having the dimers that are parallel to (1, 1) having weight
a. The transition functions are then given by

p2i,2i+1(x, y) = a−1δx−1=y + δy=x

and

p2i+1,2i+2(x, y) = ax−yδx−y≥0

for 0 ≤ i ≤ n. We extend the process for M paths with the paths from n+ 1 to
M , counting from the top, having a deterministic configuration. The random

configuration of paths induces a natural point process {(i, xij}
2n,M
i=0,j=1 where

(i, xij) is the lowest vertex in the jth path at the vertical section with horizontal
coordinate i

Then, by the LGV theorem applied multiple times, the probability of seeing a
configuration x is proportional to

(33) p0,2n(x) =

2n−1∏
r=0

det pr,r+1(x
r
j , x

r+1
k )1≤j,k≤M .

It is convenient to work with Fourier coefficients. Consider pr,r+1(x, y) =

ϕ̂r(y − x), that is

(34) pr,r+1(x, y) =
1

2πi

∫
γ1

dz

z

ϕr(z)

zy−x

where γr is a positively oriented contour around the origin of radius r. In our
case, we have

(35) ϕ2i,2i+1(z) = 1 + a−1z−1 and ϕ2i+1,2i+2(z) =
1

1− az−1
.

Define

(36) ϕ2r+ε1,2s+ε2(z) = (1 + a−1z−1)s−r+ε2−ε1
1

(1− az−1)s−r

so that

(37) pr,s(x, y) = ϕ̂r,s(y − x)Ir<s.

Let Wi,j = p0,2n(n− i,−j) for 1 ≤ i, j ≤M . The Eynard Mehta Theorem states
that the correlation kernel of particles is given by

L((2r + ε1, u); (2s+ ε2, v)) = −p2r+ε1,2s+ε2(u, v)

+

n∑
i,j=1

p2r+ε1,2n(u,−j)(W−1)jip0,2s+ε2(n− i, v).
(38)

We have the following lemma.

Lemma 2.4. For a < ρ1 < ρ2 < 1/a,

L((2r + ε1, u); (2s+ ε2, v)) = −I2r+ε1<2s+ε2

2πi

∫
γρ1

dz

z

(1 + a−1z−1)s−r+ε2−ε1

(1− az−1)s−r
1

zv−u

+
1

(2πi)2

∫
γρ1

dz

∫
γρ2

dw
zu

wv+1(w − z)

(1 + a−1z−1)n−r−ε1(1− az−1)r

(1− aw−1)s(1 + a−1w)n−s−ε2
.

(39)
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We leave the proof of this lemma as an exercise.
In general, computing the inverse of W is difficult, but there are tricks such

as noticing that W is a finite Toeplitz matrix. There are inversion formulas
for infinite Toeplitz matrices, so the standard approach is to show that W can
be made into an infinite Toeplitz matrix by freezing off configurations. Once
the inverse of W is found, then the correlation kernel is essentially determined.
In fact, this also determines the inverse Kasteleyn matrix through the Schur
complement formula; see Lemma 2.3.

The approach mentioned briefly above has been used to compute the correlation
kernel of many so called integrable probability models, including uniformly random
domino tilings [Joh05]. For higher periodic weights on the Aztec diamond, three
main methods [CY14, DK21, BD19] have been established with relations between
the methods found in [CD23, KP25]. Nevertheless, the problem of finding the
correlation kernel for more general weights was recently settled [BdT24] in full
generality by exploiting an inherent algebraic structure of the general weights.

2.8. Lecture 2 Exercises.

Exercise 11. Let a and c be white vertices on the boundary of the Aztec
diamond and let b and d be black vertices on the boundary of the Aztec diamond.
Impose that a, b, and c and d have cyclic order around the boundary. Let
Zn[{v1, . . . , vm}] denote the partition function of removing v1, . . . , vm from the
Aztec diamond. Show that

(40) Zn[{a, b, c, d}]Zn = Zn[{a, b}]Zn[{c, d}] + Zn[{a, d}]Zn[{b, c}]
This is known as Kuo condensation [Kuo06].

Exercise 12. Show Claim 1.

Exercise 13. Prove that the DR paths defined in Section 2.4 are non-intersecting
paths.

Exercise 14. Prove Lemma 2.4.

Exercise 15. Find the boundary recurrence relation for the two-periodic Aztec
diamond.

3. Lecture 3

3.1. Kenyon-Okounkov-Sheffield Theory. We give a brief excursion into
some general model theory discovered in [KOS06] which determines the translation
invariant Gibbs measures for dimer models on the plane with a specified slope.
We will only describe the results as the proofs are not the focus of these notes;
see [KOS06] for details.

We will consider the theory for the two-periodic weighting of the square grid.
Here, there are two types of white vertices and two types of black vertices. Let

(41) W̃ = {(i, j) ∈ Z2 : i mod 2 = 1, j mod 2 = 0},
denote the white vertices,

(42) B̃ = {(i, j) ∈ Z2 : i mod 2 = 0, j mod 2 = 1},
denote the black vertices, and for i ∈ {0, 1}, let
(43) B̃i = {(x1, x2) ∈ B̃ : x1 + x2 mod 4 = 2i+ 1}
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Figure 9. The fundamental domain of the two-periodic weight-
ing.

and

(44) W̃i = {(x1, x2) ∈ W̃ : x1 + x2 mod 4 = 2i+ 1}

denote the two types of white and black vertices respectively.
The results of [KOS06] rely on using the smallest non-repeating unit of the

graph which is called the fundamental domain, which in our case is depicted in
Figure 9 along with the edge weights and Kasteleyn signs.

To describe the Gibbs measure, introduce magnetic coordinates. For the
fundamental domain considered here, we represent the magnetic coordinates
by (B1, B2) where each edge weight in the neighboring fundamental domain
in the direction (1, 1) (or resp. (1,−1)), is mulitplied by eB1 (or eB2 resp.).
Conversely, each edge weight in the neighboring fundamental domain in the
direction −(1, 1) (or −(1,−1) resp.) is multiplied by e−B1 (or e−B2 resp.). These
magnetic coordinates are related to the average slope, that is, the Gibbs measures
are characterized by the magnetic coordinates. For example, B1 = 0 and B2 = 0
correspond to zero average slope in both directions.

Let K(z, w) denote the Kasteleyn matrix for the above fundamental domain
where 1/z is the multiplicative factor when crossing to a fundamental domain in
the direction e1 and 1/w is multiplicative factor when crossing to the fundamental
domain in the direction e2; see Figure 9. Explicitly, we have

(45) K(z, w) =

(
i(a+ w−1) a+ z
a+ z−1 i(a+ w)

)
.

Suppose that x ∈ W̃α1 and y ∈ B̃α2 for α1, α2 ∈ {0, 1} with the translation to get
to the fundamental domain containing y from the fundamental domain containing
x given by ue1 + ve2. The whole plane inverse Kasteleyn matrix for the entries x
and y with magnetic coordinate (log r1, log r2) is denoted by K−1

r1,r2(x, y). Then
from [KOS06], we have

(46) K−1
r1,r2(x, y) =

1

(2πi)2

∫
Γr1

dz

z

∫
Γr2

dw

w
[(K(z, w))−1]α1+1,α2+1z

uwv,
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Figure 10. A simulation of a two-periodic Aztec diamond of size
200, showing three macroscipic regions

where Γr denotes a positively oriented contour around 0 with radius r. In the
above formula, (K(z, w))−1 is the inverse of K(z, w) and is given explicitly by

(47) (K(z, w))−1 =
1

P (z, w)

(
i(a+ w) −(a+ z)

−(a+ z−1) i(a+ w−1)

)
where

(48) P (z, w) = detK(z, w) = −2− 2a2 − a

w
− aw − a

z
− az.

The function P (z, w) is called the characteristic polynomial and the theory goes
further too. Look at the exponents of P (z, w) and plot the Newton polygon.
Then, the interior integer points corresponds to smooth regions, the exterior
integer points are frozen regions while the remaining interior points (that are not
integer points) correspond to the rough regions, which are all parameterized by
the average slope. Here, frozen corresponds to deterministic configurations, rough
corresponds to polynomial decay of correlations with distance between dominoes
and smooth correspond to exponential decay of correlations with distance between
dominoes.

In the two-periodic weighting case, there is one smooth region with magnetic
coordinates are given by (0, 0) (the average slope is zero), while if the magnetic
coordinates are given by (log r1, log r2) with P (z, w) = 0 for some (z, w) ∈
Γr1 × Γr2 (from [KOS06] the value of (z, w) ∈ Γr1 × Γr2 with P (z, w) = 0 is
complex), then the model is in a rough region. An example of simulation of the
two-periodic weighting for the Aztec diamond, that is the two-periodic Aztec
diamond, is given in Figure 10 which shows three macroscopic regions.

Finally, we make a remark taht in this mini-course, we have omitted several
topics that are central to the general dimer model machinery One of the most
fundamental results omitted is the variational principle for the dimer model
[CKP01], which states that a continuous surface emerges for large random dimer
coverings representing the bulk shape of the region. This surface is called the
limit shape and it is the minimizer of the so-called surface tension. Associated to
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the limit shape are the limit shape curves which splits the tiling into potentially
three macroscopic regions as determined in [KOS06]. Studying the limit shape
through its minimizer is a hard problem but has given a deep understanding of
the theory of dimer models [KO07, ADPZ20] such as the limit shape curves are
algebraic. Aside from uniformly random lozenge tilings [Agg23], the local limits
in random tilings models to their corresponding Gibbs measure counterparts has
only been established where there are explicit formulas for the correlation kernel.

3.2. The Airy Process. The Airy process is a collection of stochastic processes
expected to govern the long time, large scale, spatial fluctuations of random
growth models. We define it through its point process.

Define the extended Airy kernel as

(49) A(τ, ξ;σ, η) =

{ ∫∞
0 e−λ(τ−σ)Ai(ξ + λ)Ai(η + λ)dλ if τ ≥ σ

−
∫∞
0 e−λ(τ−σ)Ai(ξ + λ)Ai(η + λ)dλ if τ ≥ σ

where Ai(·) is the Airy function which is defined by

(50) Ai(x) =
1

2πi

∫
C
dωe

ω3

3
−xω

and C is an infinite contour that consists of two straight line pieces, one that
approaches the origin from −∞e−iπ/3 at angle −π/3 and the other that leaves

the origin at angle π/3 and goes to ∞eiπ/3. The Airy kernel is the case when
τ = σ in (49) and is given by

(51) A(ξ, η) =

∫ ∞

0
Ai(ξ + λ)Ai(η + λ)dλ.

Let β1 < · · · < βL1 , L1 ≥ 1 be fixed given real numbers. Then the extended
Airy kernel gives a determinantal point process on L1 lines {β1, . . . , βL1} × R
defining a point process µAi, called the extended Airy kernel point process. Let
A1, . . . , AL2 , L2 ≥ 1 be finite disjoint intervals in R and write for ωp,q ∈ C

ψ(x) =

L2∑
p=1

L1∑
q=1

ωp,qI{βq}×Ap
(x).

Then, we have that

(52) E

[
exp

(
L2∑
p=1

L1∑
q=1

wp,qµAi({βq}×Ap

)]
= det

[
I+(eψ−1)A

]
L2({β1,...,βL2

}×R)

which defines the extended Airy kernel point process
Note that a single line of the extended Airy kernel point process is the Airy

kernel point process, that is

(53) E

[
exp

(
L2∑
p=1

wp,1µAi({β1} ×Ap

)]
= det

[
I+ (eψ − 1)A

]
L2({β1}×R)

where ψ is modified accordingly.
Let ξ denote the Airy kernel point process on R. The Airy kernel point process

has the property that ξ(t,∞) <∞, that is the number of particles in (t,∞) is
finite. This means that there is a last particle of the Airy kernel point process,
which we denote by ξmax and we can find its distribution. By setting ϕ = I(t,s) in
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(17) with s > t, sending s→ ∞ and using the dominated convergence theorem,
we get
(54)

P[ξmax < t] =

∞∑
n=0

(−1)n

n!

∫ ∞

t
detA(xi, xj)1≤i,j≤nd

nλ(x) = det(I−A)L2((t,∞)).

The above distribution is the GUE-Tracy Widom distribution [TW94].
We now define the Airy-2 process, t 7→ A(t) through its finite dimensional

distributions. For any sj ∈ R, it is the process such that

(55) P[A(β1) ≤ s1, . . . , A(βm) ≤ sm] = det(I− L)L2({β1,...,βL2
}×R)

where

L(βi, ξi;βj , ξj) = I(si,∞)(ξi)A(βi, si;βj , sj)I(sj ,∞)(ξj).

Locally, the Airy process has Brownian paths, but is not a Markov process. It
appears in a wide number of settings such as in KPZ Universality and governing
the fluctuations of interface models. Indeed, the Airy process governs the fluc-
tuations of the frozen-rough boundary for domino tilings of the Aztec diamond
[Joh05] and universality has only recently been achieved for lozenge tilings with
arbitrary boundary conditions [AG21].

3.3. A saddle point analysis. In these lecture notes, we give an example of
using the inverse Kasteleyn matrix for the Aztec diamond to get both a local
limit and an interface fluctuation result. This example illustrates the saddle point
analysis technique in a relatively simple setting.

For w ∈ WAz
n and b = (x1, x2) ∈ BAz

n , we choose the Kasteleyn weighting

(56) KAz
n (b, w) =

 (−1)l+(x1+x2−1)/2 if w = b+ (−1)le1 ∈ W

(−1)l+(x1+x2−1)/2ai if w = b− (−1)le2 ∈ W

0 otherwise.

Then, from [CJY15], we have that for x ∈ WAz
n and y ∈ BAz

n , we choose the
Kasteleyn weighting

(KAz
n )−1(x, y) =

{
f1(x, y) for x1 < y1 + 1
f1(x, y)− f2(x, y) for x1 ≥ y1 + 1

(57)
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where

f1(x, y) =
(−1)(y1+y2+x1+x2)/4

(2πi)2

∫
E2

∫
E1

wy1/2

z(x1+1)/2(w − z)

(a+ z)x2/2(az − 1)(2n−x2)/2

(aw − 1)(2n+1−y2)/2(a+ w)(y2+1)/2
dz dw

(58)

and
(59)

f2(x, y) =
(−1)(x1+x2+y1+y2)/4

2πi
a(y2−x2−1)/2

∫
E1

z(y2−x2−1)/2(1/a+ z)(y1−x1−1)/2

(1/a+ a+ z)(y2−x2+1)/2
dz

where E1 is the positively oriented contour |z| = ε, E2 is the positively oriented
contour |w − 1/a| = ε and the contours do not intersect.

We will work with the following correlation kernel whose proof is an exercise.

Lemma 3.1. Consider the point process of the dimers of the form ((2s, 2r +
1), (2s − 1, 2r)) for s ∈ {1, . . . , n} and r is fixed. Then, these dimers form a
determinantal point process whose correlation kernel is given by

L(x1, x2) := − 1

(2πi)2

∫
E1
dz

∫
E2
dw

wx2

zx1
(a+ z)r(az − 1)n−r

(aw − 1)n−r(a+ w)r+1(w − z)
(60)

For the rest of the lecture, we will set a = 1, n to be divisible by 4 and r = 3n
4 .

Let

(61) zc = zc(α) =
1 +

√
1− 16α+ 16α2

4(1− α)

for αl ≤ α ≤ αr where

(62) αl =
1

4
(2−

√
3) and αr =

1

4
(2 +

√
3)

Introduce the function

(63) g(z) =
3

4
log(1 + z) +

1

4
log(z − 1)− α log z.

which has critical points zc and zc for αl < α < αr and a double critical point at
zc when α = αl or αr. We have the following lemmas on the asymptotics of the
kernels.

Lemma 3.2. For i ∈ {1, 2}, set xi = αn+Xi where Xi ∈ Z is fixed with n and
αl < α < αr so that zc ∈ H+. Then, uniformly on compact sets, we have

(64) L(αn+X1, αn+X2) =
1

2πi

∫ zc

zc

dz
zX2−X1

z + 1
+O(n−

1
2 )

Lemma 3.3. For i ∈ {1, 2}, set xi = αln+ λξin
1
3 where ξi ∈ R is fixed in some

compact set, where λ = zc(αl)(−g′′′(zc(αl))/2)1/3. Then, uniformly for ξ, η on a
compact subset of R, we have

(65) lim
n→∞

λn1/3zc(αl)
ξ1−ξ2L(αln+ λn

1
3 ξ1, αln+ λn

1
3 ξ2) =

1

zc(αl) + 1
A(ξ1, ξ2).
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We only give sketch proofs of the above two results with the main focus on the
second result. The first result is a local limit and is related to the Gibbs measure
in [KOS06] introduced earlier in the lecture. This can be seen by evaluating the
Gibbs measure for this model and a change of variables. For the second result,
notice that there is a coefficient in front of the Airy kernel term. This corresponds
to an independent thinning of the Airy kernel point process. Indeed, let {xj} be
the points of a determinantal point process with correlation kernel K and let
{nj} be an independent thinning with P[nj = 1] = α and let ϕ = 1− e−ψ. Then,
by denoting En and EK to be the expectation with respect to the thinning and
determinantal point processes respectively, we have that

(66) E[e−
∑

j njψ(xj)] = EKEn[
∏
j

(1− (1− e−njψ(xj)))] = EK [
∏
j

(1− αϕ(xj))]

which gives a multiplicative factor of α in front of K in (17) as required. We can
do a similar computation for αr as given in Lemma 3.3, but the coefficient is
greater than 1, which corresponds to a thickening of the Airy kernel point process
with a geometric random variable and the resulting point process is no longer
simple [CJY15].

Sketch proof of Lemma 3.3. The main steps to prove this result are to

• Express L(x1, x2) in terms of the saddle point function g(z) and identify
the critical points of g(z).

• Identify the curves of steepest ascent and descent and deform the contours
to the curves of steepest ascent and descent, taking care of additional
contributions from crossing contours.

• Split the contours into a local contribution and a global contribution,
arguing that the global contribution is negligible when compared to the
local contribution.

• Evaluate the local contribution which will give the main contribution.

In the list above, we will omit step 3 and only state the contours of steepest
descent and ascent.

From the form of L(x1, x2) given in (60) and the choice of x1 and x2 given in
the statement of Lemma 3.3, we have that

(67) L(x1, x2) = − 1

(2πi)2

∫
E1
dz

∫
E2
dw

wλn
1/3ξ2

zλn
1/3ξ1

1

(1 + w)(w − z)
eng(z)−ng(w).

For the integration contours we choose the steepest descent contours given by
the level lines of the imaginary part of g(z) starting at zc. It can be seen that we
will have two ascending contours for the real part of g(z) which will leave in the

directions e±πi/3 and go to infinity. We deform the contour E2 to a contour Γ2

consisting of these two pieces. We have two descending contours going from zc to
−a leaving in the directions e±2πi/3 and these can be combined into a contour Γ1

and thus we deform E1 to this contour Γ1.
For the local contribution, we make the local change of variables z − zc =

c0ω1in
−1/3 and w− zc = c0ω2in

−1/3 where c0 is a constant to be determined. We
have that by a Taylor series
(68)

ng(z)−λn
1
3 ξ1 log z = ng(zc)−λn

1
3 ξ1 log zc−

c30ω
3

3!
ig′′′(zc)−

λξ1c0ω1i

zc
+O(n−

1
3 ).
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We can set c0 = (−g′′′(zc)/2)1/3 and λ as given in the statement of the lemma so
that the above equation becomes

(69) ng(z)− λn
1
3 ξ1 log z = ng(zc)− λn

1
3 ξ1 log zc +

iω3
1

3
− ξ1ω1 +O(n−

1
3 ).

Substituting the above equation back into (67) and doing the same for the w
variable gives
(70)

lim
n→∞

−λn1/3zξ1−ξ2c L(x1, x2) =
1

zc + 1

1

(2πi)2

∫
Γ
dz

∫
Γ
dw

eiz
3/3+iξ1z+iw3/3+iξ2w

i(z + w)

where Γ is given by z(t) = −te(π−θ)i, t < 0 and z(t) = teiθ, t ≥ 0, with a fixed
0 < θ < π/3. The result follows since the integral on the right side is exactly the
Airy kernel. □

Sketch proof of Lemma 3.2. We evaluate the same steps as given above in the
proof of Lemma 3.3, however time the contours cross. The crossing contours give
the main contribution. We can evaluate the remaining double integral using the

saddle point analysis and we get that this is O(n−
1
2 ). □

The other fluctuation type result around the limit shape is the fluctuations of
the height function in the rough region, which is typically given by a Gaussian
free field for flat regions [Ken00, Ken01, BLR20] as well as for stepped regions
[BF14, Pet15, BG18, BK18, BN25].

3.4. Lecture 3 Exercises.

Exercise 16. Prove Lemma 3.1.

Exercise 17. Suppose that {xj} be the points of a determinantal point process
with correlation kernel K and let {nj} be a geometric random variable with

parameter β and let ϕ = 1− e−ψ. Give a similar form to (66) for E[e−
∑

j njψ(xj)]
where ϕ = 1 − e−ψ and

∑
j is the sum over the particles of the determinantal

point process {xj}.
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